Magnetic link has been copied to the cutting board

Name UDACITY - Artificial Intelligence AI for Trading v1.0.0

File Type video

Size 5.86GB

UpdateDate 2024-11-24

hash *****6BA0D40B987C768E5C77294379B4B2CE41

Hot 3

Files Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.tr.vtt | 81B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-CN.vtt | 83B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.hr.vtt | 83B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt | 84B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.zh-CN.vtt | 84B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.hr.vtt | 85B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.hr.vtt | 85B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-Hans.vtt | 85B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.en.vtt | 86B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.hr.vtt | 86B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.en.vtt | 86B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt | 87B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.hr.vtt | 87B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.it.vtt | 87B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.it.vtt | 88B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ja.vtt | 88B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ja.vtt | 88B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.en.vtt | 88B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt | 89B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.en.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ja.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.it.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.pt-BR.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-PT.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.it.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.it.vtt | 89B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt | 90B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ar.vtt | 90B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.en.vtt | 90B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt | 90B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.it.vtt | 90B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.en.vtt | 90B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ja.vtt | 91B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.pt-BR.vtt | 91B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt | 92B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ar.vtt | 92B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-CN.vtt | 94B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.it.vtt | 94B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ja.vtt | 94B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ar.vtt | 94B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt | 94B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.en.vtt | 95B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.en.vtt | 95B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.hr.vtt | 95B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ar.vtt | 95B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.es-ES.vtt | 95B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.es-ES.vtt | 95B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ar.vtt | 96B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.it.vtt | 96B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ja.vtt | 97B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt | 97B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ar.vtt | 98B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-Hans.vtt | 98B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt | 98B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt | 99B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt | 99B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ar.vtt | 99B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt | 99B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt | 100B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ja.vtt | 100B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt | 101B Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-BR.vtt | 101B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt | 101B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.en.vtt | 103B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt | 104B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.en.vtt | 104B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt | 106B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.es-ES.vtt | 107B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.th.vtt | 108B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt | 108B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ar.vtt | 108B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt | 108B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt | 108B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt | 108B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.es-ES.vtt | 109B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.en.vtt | 109B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.es-ES.vtt | 109B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ja.vtt | 110B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt | 110B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ar.vtt | 110B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.en.vtt | 110B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.zh-CN.vtt | 111B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt | 113B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt | 113B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ja.vtt | 113B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-CN.vtt | 115B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ja.vtt | 116B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt | 116B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.zh-CN.vtt | 117B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt | 118B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ja.vtt | 118B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt | 118B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.es-ES.vtt | 118B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.en.vtt | 118B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt | 119B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.en.vtt | 119B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.es-ES.vtt | 120B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.en.vtt | 120B Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt | 122B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ja.vtt | 122B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ar.vtt | 122B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.pt-BR.vtt | 122B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ja.vtt | 123B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt | 123B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.zh-CN.vtt | 123B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt | 123B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt | 123B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.es-ES.vtt | 125B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt | 125B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt | 125B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ja.vtt | 126B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ar.vtt | 126B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt | 126B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.zh-CN.vtt | 127B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.it.vtt | 127B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.en.vtt | 128B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.en.vtt | 129B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ar.vtt | 129B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.es-ES.vtt | 129B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt | 129B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.it.vtt | 129B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.th.vtt | 130B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.en.vtt | 130B Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt | 130B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ja.vtt | 132B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ar.vtt | 132B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ja.vtt | 134B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.th.vtt | 135B Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt | 136B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.en.vtt | 136B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt | 137B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ja.vtt | 137B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.it.vtt | 138B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.es-ES.vtt | 138B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.en.vtt | 138B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ja.vtt | 138B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ja.vtt | 139B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.es-ES.vtt | 140B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.en.vtt | 140B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ar.vtt | 141B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ja.vtt | 141B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.es-ES.vtt | 141B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.es-ES.vtt | 141B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ja.vtt | 141B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.en.vtt | 142B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ja.vtt | 142B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt | 142B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.es-ES.vtt | 143B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ar.vtt | 144B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.hr.vtt | 144B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt | 146B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt | 146B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.en.vtt | 147B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.en.vtt | 148B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.pt-BR.vtt | 149B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.hr.vtt | 149B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt | 149B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.zh-CN.vtt | 149B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ja.vtt | 149B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.pt-BR.vtt | 149B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt | 150B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.it.vtt | 151B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.th.vtt | 152B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt | 152B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ar.vtt | 152B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt | 152B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt | 153B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ar.vtt | 153B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ja.vtt | 154B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.en.vtt | 155B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.en.vtt | 155B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.es-ES.vtt | 155B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt | 155B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt | 155B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.hr.vtt | 155B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ja.vtt | 156B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt | 157B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt | 157B Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt | 157B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.hr.vtt | 157B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.pt-BR.vtt | 158B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt | 158B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ar.vtt | 158B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt | 158B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ja.vtt | 159B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt | 160B Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt | 160B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.th.vtt | 160B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ar.vtt | 161B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.pt-BR.vtt | 162B Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ar.vtt | 163B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.hr.vtt | 163B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt | 163B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.it.vtt | 164B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt | 164B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.th.vtt | 164B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt | 164B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.pt-BR.vtt | 164B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt | 165B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.en.vtt | 165B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ar.vtt | 166B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt | 166B Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt | 167B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.en.vtt | 167B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt | 168B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt | 169B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.en.vtt | 169B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt | 169B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt | 170B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt | 171B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.it.vtt | 171B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.it.vtt | 171B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.it.vtt | 173B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt | 173B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.pt-BR.vtt | 173B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt | 174B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt | 174B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt | 174B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ja.vtt | 175B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt | 175B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ar.vtt | 176B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt | 176B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.th.vtt | 177B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.zh-CN.vtt | 177B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.th.vtt | 178B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.it.vtt | 178B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.en.vtt | 180B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt | 180B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt | 180B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt | 182B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt | 183B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ja.vtt | 184B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ar.vtt | 184B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt | 184B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt | 185B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt | 186B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.zh-CN.vtt | 186B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ja.vtt | 187B Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.it.vtt | 187B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt | 189B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.en.vtt | 190B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt | 190B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ja.vtt | 190B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ar.vtt | 191B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt | 192B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.es-ES.vtt | 192B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ja.vtt | 194B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ja.vtt | 194B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt | 196B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.en.vtt | 196B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ja.vtt | 197B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.zh-CN.vtt | 197B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.hr.vtt | 197B Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt | 198B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.en.vtt | 198B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt | 198B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ja.vtt | 199B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt | 200B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ja.vtt | 201B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt | 201B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ar.vtt | 202B Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt | 202B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ja.vtt | 202B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.hr.vtt | 204B Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.pt-BR.vtt | 204B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.th.vtt | 204B Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ar.vtt | 204B Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.th.vtt | 205B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.it.vtt | 205B Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.zh-CN.vtt | 206B Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.en.vtt | 207B Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt | 207B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ar.vtt | 207B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ar.vtt | 208B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.hr.vtt | 209B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt | 209B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt | 210B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.en.vtt | 210B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.it.vtt | 210B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.zh-CN.vtt | 210B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ar.vtt | 211B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt | 212B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ja.vtt | 212B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.zh-CN.vtt | 212B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt | 212B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.it.vtt | 212B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.hr.vtt | 213B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.it.vtt | 213B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt | 214B Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.en.vtt | 214B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.en.vtt | 214B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.en.vtt | 214B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt | 215B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt | 215B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.hr.vtt | 216B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.en.vtt | 216B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt | 216B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt | 216B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ja.vtt | 216B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.en.vtt | 217B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ja.vtt | 217B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt | 217B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt | 218B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt | 218B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.en.vtt | 219B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.es-ES.vtt | 219B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.en.vtt | 219B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.pt-BR.vtt | 219B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ja.vtt | 219B Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt | 221B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.en.vtt | 222B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ar.vtt | 222B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt | 222B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ar.vtt | 222B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt | 223B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt | 223B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt | 225B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt | 226B Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.es-ES.vtt | 227B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt | 228B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt | 228B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.th.vtt | 228B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.en.vtt | 231B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.it.vtt | 231B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.es-ES.vtt | 231B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt | 232B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt | 233B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt | 234B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt | 234B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.it.vtt | 234B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt | 236B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.es-ES.vtt | 236B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ja.vtt | 237B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt | 238B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt | 238B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt | 238B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ar.vtt | 238B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.it.vtt | 239B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.es-ES.vtt | 239B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.en.vtt | 240B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.pt-BR.vtt | 240B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.it.vtt | 240B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.th.vtt | 240B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.th.vtt | 240B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.en.vtt | 241B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt | 241B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ja.vtt | 241B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt | 242B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt | 243B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ja.vtt | 243B Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.th.vtt | 244B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt | 244B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.en.vtt | 244B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.en.vtt | 245B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.en.vtt | 246B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt | 246B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt | 247B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.en.vtt | 247B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt | 247B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ja.vtt | 248B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.it.vtt | 248B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.en.vtt | 248B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt | 248B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt | 249B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt | 249B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.pt-BR.vtt | 249B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt | 249B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt | 250B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ar.vtt | 250B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt | 251B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.es-ES.vtt | 252B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt | 252B Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt | 252B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.th.vtt | 252B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt | 253B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ar.vtt | 254B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt | 254B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.pt-BR.vtt | 254B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt | 256B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt | 256B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt | 257B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt | 257B Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.ar.vtt | 258B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt | 258B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt | 260B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt | 260B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ja.vtt | 260B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.en.vtt | 260B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt | 261B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt | 262B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt | 262B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ja.vtt | 264B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt | 265B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ar.vtt | 265B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ar.vtt | 265B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.th.vtt | 267B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt | 268B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.en.vtt | 268B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt | 269B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.es-ES.vtt | 272B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt | 275B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt | 276B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt | 277B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.zh-CN.vtt | 277B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ar.vtt | 278B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.en.vtt | 279B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt | 279B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt | 280B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.zh-CN.vtt | 280B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.en.vtt | 281B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt | 281B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt | 282B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ar.vtt | 283B Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt | 284B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt | 285B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ar.vtt | 286B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt | 289B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.it.vtt | 289B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt | 291B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.it.vtt | 291B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.hr.vtt | 291B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt | 293B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt | 293B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ja.vtt | 293B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ja.vtt | 296B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.zh-CN.vtt | 296B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.zh-CN.vtt | 297B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.en.vtt | 297B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt | 298B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ja.vtt | 298B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.th.vtt | 299B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ja.vtt | 300B Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ja.vtt | 300B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ja.vtt | 301B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ja.vtt | 301B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt | 301B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt | 302B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.zh-CN.vtt | 302B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ar.vtt | 302B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ja.vtt | 302B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.zh-CN.vtt | 303B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ar.vtt | 303B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt | 303B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ar.vtt | 303B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt | 304B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ja.vtt | 304B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt | 304B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.th.vtt | 305B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ja.vtt | 305B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.hr.vtt | 305B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.zh-CN.vtt | 305B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ja.vtt | 305B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.pt-BR.vtt | 306B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt | 307B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.en.vtt | 307B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.it.vtt | 307B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.it.vtt | 308B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.zh-CN.vtt | 309B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ja.vtt | 310B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.en.vtt | 310B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.it.vtt | 311B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.en.vtt | 312B Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt | 312B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.hr.vtt | 312B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.en.vtt | 313B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.zh-CN.vtt | 314B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.it.vtt | 314B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.es-ES.vtt | 314B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ja.vtt | 315B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.en.vtt | 315B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt | 315B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.it.vtt | 315B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.zh-CN.vtt | 316B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt | 317B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.en.vtt | 317B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt | 318B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.ja.vtt | 319B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt | 319B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.hr.vtt | 319B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt | 320B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.en.vtt | 322B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ja.vtt | 323B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.zh-CN.vtt | 323B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.it.vtt | 324B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ar.vtt | 325B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.en.vtt | 325B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.zh-CN.vtt | 325B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.pt-BR.vtt | 326B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ja.vtt | 326B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt | 326B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ja.vtt | 327B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt | 327B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt | 329B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt | 329B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt | 331B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ja.vtt | 331B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ja.vtt | 332B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.pt-BR.vtt | 332B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt | 332B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.zh-CN.vtt | 332B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.es-ES.vtt | 333B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ar.vtt | 334B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt | 335B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt | 336B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.en.vtt | 336B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.es-ES.vtt | 337B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.it.vtt | 338B Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ar.vtt | 339B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.pt-BR.vtt | 339B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.en.vtt | 339B Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.th.vtt | 339B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.ja.vtt | 340B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.en.vtt | 340B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.it.vtt | 341B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.en.vtt | 341B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt | 341B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ar.vtt | 341B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.th.vtt | 342B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.en.vtt | 342B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt | 342B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.en.vtt | 342B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.en.vtt | 343B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ja.vtt | 345B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt | 348B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt | 348B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt | 348B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.en.vtt | 349B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.zh-CN.vtt | 349B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt | 349B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.en.vtt | 349B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ja.vtt | 350B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.es-ES.vtt | 350B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.en.vtt | 351B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt | 351B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ja.vtt | 353B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.en.vtt | 353B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.en.vtt | 354B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.th.vtt | 354B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.pt-BR.vtt | 354B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt | 355B Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.en.vtt | 355B Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.zh-CN.vtt | 355B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt | 355B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.es-ES.vtt | 355B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.es-ES.vtt | 356B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt | 356B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.es-ES.vtt | 357B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.en.vtt | 357B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.es-ES.vtt | 357B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ja.vtt | 357B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt | 358B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.en.vtt | 358B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.it.vtt | 359B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.th.vtt | 359B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt | 360B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.es-ES.vtt | 360B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.zh-CN.vtt | 361B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt | 362B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.pt-BR.vtt | 362B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt | 364B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt | 364B Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt | 364B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.en.vtt | 364B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.es-ES.vtt | 366B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.es-ES.vtt | 367B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.en.vtt | 368B Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.pt-BR.vtt | 369B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt | 369B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt | 369B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.pt-BR.vtt | 370B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ja.vtt | 370B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.en.vtt | 370B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ja.vtt | 371B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.it.vtt | 372B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.pt-BR.vtt | 373B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.en.vtt | 373B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ja.vtt | 373B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ja.vtt | 374B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.pt-BR.vtt | 375B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.it.vtt | 375B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.zh-CN.vtt | 376B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.pt-BR.vtt | 377B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt | 377B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt | 379B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt | 380B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt | 380B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.it.vtt | 382B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt | 383B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.hr.vtt | 383B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt | 384B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.ar.vtt | 385B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.zh-CN.vtt | 385B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.en.vtt | 387B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.es-ES.vtt | 388B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt | 389B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ja.vtt | 389B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.es-ES.vtt | 389B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt | 389B Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.zh-CN.vtt | 389B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt | 390B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt | 390B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ja.vtt | 390B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt | 390B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.pt-BR.vtt | 391B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.es-ES.vtt | 393B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.th.vtt | 393B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt | 393B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ja.vtt | 395B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ar.vtt | 395B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.pt-BR.vtt | 396B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ar.vtt | 396B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt | 397B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.en.vtt | 397B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ja.vtt | 397B Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.th.vtt | 398B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ar.vtt | 399B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.en.vtt | 399B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ar.vtt | 399B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt | 401B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.zh-CN.vtt | 403B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ja.vtt | 403B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt | 403B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ar.vtt | 404B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ar.vtt | 405B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.es-ES.vtt | 406B Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.zh-CN.vtt | 408B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.es-ES.vtt | 408B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt | 408B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.it.vtt | 409B Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.zh-CN.vtt | 410B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt | 410B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt | 410B Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.pt-BR.vtt | 411B Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt | 411B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ar.vtt | 411B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.es-ES.vtt | 412B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.en.vtt | 414B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.it.vtt | 414B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt | 415B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.th.vtt | 415B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.en.vtt | 416B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ja.vtt | 417B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt | 417B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt | 418B Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt | 419B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ja.vtt | 419B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt | 420B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt | 420B Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ar.vtt | 420B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt | 420B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt | 420B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.pt-BR.vtt | 422B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.zh-CN.vtt | 422B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.it.vtt | 422B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.th.vtt | 423B Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.en.vtt | 423B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.es-ES.vtt | 424B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.en.vtt | 424B Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.zh-CN.vtt | 424B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.es-ES.vtt | 425B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt | 425B Part 01-Module 02-Lesson 04_Time Series Modeling/09. M2L4 11 Outro V1-6sheR92KUU8.en.vtt | 425B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.hr.vtt | 425B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.es-ES.vtt | 426B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt | 427B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.en.vtt | 427B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.en.vtt | 428B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ja.vtt | 428B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt | 431B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.en.vtt | 432B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt | 433B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.en.vtt | 433B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.it.vtt | 433B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.it.vtt | 435B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ar.vtt | 436B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ar.vtt | 437B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.pt-BR.vtt | 439B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt | 440B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.th.vtt | 441B Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt | 441B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt | 442B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt | 442B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ja.vtt | 444B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt | 444B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.ar.vtt | 444B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt | 444B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ar.vtt | 445B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt | 447B Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.th.vtt | 447B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ja.vtt | 449B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt | 451B Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.en.vtt | 451B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.it.vtt | 452B Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.en.vtt | 453B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.hr.vtt | 453B Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.pt-BR.vtt | 454B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt | 455B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en.vtt | 455B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt | 456B Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.zh-CN.vtt | 456B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt | 456B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.it.vtt | 456B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.en.vtt | 458B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ja.vtt | 458B Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt | 458B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt | 459B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ar.vtt | 459B Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.zh-CN.vtt | 460B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt | 460B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.en.vtt | 461B Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ar.vtt | 463B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt | 465B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.es-ES.vtt | 466B Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt | 466B Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.en.vtt | 467B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.en.vtt | 468B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.hr.vtt | 469B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.en.vtt | 470B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt | 471B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt | 471B Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ar.vtt | 472B Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ja.vtt | 473B Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.en.vtt | 473B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt | 473B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ar.vtt | 473B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt | 473B Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.pt-BR.vtt | 473B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ar.vtt | 473B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.it.vtt | 476B Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt | 478B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt | 478B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.en.vtt | 479B Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.ar.vtt | 479B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.es-ES.vtt | 480B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.th.vtt | 480B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt | 481B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt | 481B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt | 481B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ar.vtt | 481B Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ja.vtt | 483B Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.en.vtt | 484B Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.en.vtt | 486B Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.zh-CN.vtt | 488B Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ja.vtt | 491B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ar.vtt | 491B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ja.vtt | 492B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt | 492B Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.es-ES.vtt | 493B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ar.vtt | 493B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt | 495B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.zh-CN.vtt | 495B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt | 495B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.en.vtt | 495B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt | 495B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt | 496B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.en.vtt | 496B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt | 497B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ar.vtt | 497B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt | 498B Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt | 499B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.pt-BR.vtt | 500B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt | 501B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt | 501B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt | 501B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.es-ES.vtt | 502B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt | 503B Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.zh-CN.vtt | 504B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.it.vtt | 504B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.en.vtt | 508B Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.pt-BR.vtt | 508B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ar.vtt | 509B Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.ar.vtt | 510B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ar.vtt | 516B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt | 516B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt | 516B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt | 516B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.zh-CN.vtt | 517B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.hr.vtt | 517B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ar.vtt | 518B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ar.vtt | 518B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt | 521B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.ar.vtt | 521B Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.zh-CN.vtt | 522B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt | 522B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt | 523B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt | 523B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt | 523B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ar.vtt | 524B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en.vtt | 524B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ja.vtt | 525B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ja.vtt | 527B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.en.vtt | 528B Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.es-ES.vtt | 529B Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.zh-CN.vtt | 530B Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt | 530B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.hr.vtt | 530B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt | 530B Part 01-Module 02-Lesson 05_Volatility/14. M2L5 15 Outro V1-FMXL37CkTgg.en.vtt | 531B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ja.vtt | 531B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.zh-CN.vtt | 531B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt | 531B Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt | 532B Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt | 532B Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ar.vtt | 532B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ja.vtt | 532B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.es-ES.vtt | 533B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.zh-CN.vtt | 533B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ar.vtt | 533B Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.ar.vtt | 534B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt | 535B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt | 536B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.en.vtt | 537B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt | 538B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt | 538B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.hr.vtt | 539B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.en.vtt | 540B Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.pt-BR.vtt | 540B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ja.vtt | 541B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.th.vtt | 541B Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt | 541B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ar.vtt | 544B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt | 545B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt | 545B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt | 547B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.pt-BR.vtt | 547B Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ar.vtt | 547B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt | 548B Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.th.vtt | 548B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt | 548B Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ar.vtt | 549B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.en.vtt | 549B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt | 551B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt | 551B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.it.vtt | 552B Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt | 552B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.en.vtt | 553B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt | 553B Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.th.vtt | 554B Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt | 554B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt | 556B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ja.vtt | 557B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.en.vtt | 558B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt | 558B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ar.vtt | 558B Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.en.vtt | 558B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt | 560B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ar.vtt | 562B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.hr.vtt | 565B Part 01-Module 02-Lesson 02_Outliers and Filtering/10. M2L2 09 Outro V1-r1SWu-7Rzf0.en.vtt | 565B Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.es-ES.vtt | 565B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt | 566B Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt | 566B Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt | 567B Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.zh-CN.vtt | 569B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.en.vtt | 569B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt | 570B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.it.vtt | 571B Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.en.vtt | 571B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.zh-CN.vtt | 572B Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt | 572B Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ja.vtt | 572B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.hr.vtt | 575B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.es-ES.vtt | 575B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.zh-CN.vtt | 577B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt | 578B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.zh-CN.vtt | 579B Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.th.vtt | 579B Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt | 579B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt | 579B Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt | 582B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt | 582B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt | 582B Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.ar.vtt | 583B Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.pt-BR.vtt | 583B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt | 584B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ar.vtt | 584B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ja.vtt | 584B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt | 584B Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.en.vtt | 586B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ja.vtt | 587B Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ja.vtt | 589B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt | 589B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.zh-CN.vtt | 589B Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.pt-BR.vtt | 590B Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt | 591B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.en.vtt | 591B Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.pt-BR.vtt | 593B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ja.vtt | 594B Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.en.vtt | 595B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.es-ES.vtt | 595B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ja.vtt | 596B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ja.vtt | 597B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt | 597B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.it.vtt | 598B Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.en.vtt | 598B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.pt-BR.vtt | 598B Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.pt-BR.vtt | 599B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt | 599B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.hr.vtt | 599B Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.en.vtt | 599B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt | 600B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt | 600B Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.en.vtt | 601B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.th.vtt | 603B Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.th.vtt | 604B Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.pt-BR.vtt | 606B Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ar.vtt | 607B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt | 607B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt | 607B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ja.vtt | 608B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.es-ES.vtt | 608B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt | 609B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.es-ES.vtt | 611B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.en.vtt | 613B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt | 613B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt | 615B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt | 616B Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.zh-CN.vtt | 616B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ja.vtt | 617B Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.zh-CN.vtt | 617B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ru.vtt | 617B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.en.vtt | 617B Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt | 617B Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt | 617B Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.zh-CN.vtt | 617B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.it.vtt | 618B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ja.vtt | 618B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt | 620B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ja.vtt | 621B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt | 622B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.en.vtt | 622B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ja.vtt | 623B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ar.vtt | 623B Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.zh-CN.vtt | 624B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt | 624B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt | 624B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.it.vtt | 625B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ja.vtt | 625B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ar.vtt | 626B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ja.vtt | 627B Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.en.vtt | 628B Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.es-ES.vtt | 629B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt | 629B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt | 629B Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt | 631B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.en.vtt | 632B Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt | 632B Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.zh-CN.vtt | 633B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt | 633B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.en.vtt | 633B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt | 633B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt | 633B Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.th.vtt | 634B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.en.vtt | 635B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.hr.vtt | 637B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt | 638B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.hr.vtt | 640B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ar.vtt | 640B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.pt-BR.vtt | 642B Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.zh-CN.vtt | 644B Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.en.vtt | 645B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.en.vtt | 646B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ar.vtt | 650B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt | 650B Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ar.vtt | 650B Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.ar.vtt | 652B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.en.vtt | 653B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.th.vtt | 653B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ar.vtt | 654B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.th.vtt | 654B Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt | 655B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.en.vtt | 655B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.es-ES.vtt | 656B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.it.vtt | 656B Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ar.vtt | 656B Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.th.vtt | 657B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt | 657B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt | 658B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ja.vtt | 661B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.hr.vtt | 662B Part 01-Module 03-Lesson 04_Portfolio Optimization/01. L4 01 Intro V1-CtIcmmR0YTs.en.vtt | 662B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ar.vtt | 663B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt | 663B Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt | 665B Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.en.vtt | 665B Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.th.vtt | 667B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ja.vtt | 669B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ar.vtt | 670B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt | 670B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.pt-BR.vtt | 671B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt | 671B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.es-ES.vtt | 671B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.it.vtt | 671B Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.pt-BR.vtt | 672B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.zh-CN.vtt | 673B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt | 673B Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.ar.vtt | 673B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.zh-CN.vtt | 675B Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.en.vtt | 675B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.zh-CN.vtt | 676B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.th.vtt | 677B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt | 679B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.es-ES.vtt | 679B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt | 679B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.en.vtt | 680B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.zh-CN.vtt | 680B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.pt-BR.vtt | 680B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt | 681B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.en.vtt | 682B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.ar.vtt | 682B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.es-ES.vtt | 682B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.en.vtt | 682B Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt | 684B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt | 684B Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ar.vtt | 684B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ar.vtt | 684B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.zh-CN.vtt | 686B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt | 686B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt | 687B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt | 688B Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.en.vtt | 688B Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt | 690B Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.en.vtt | 690B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.hr.vtt | 690B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt | 691B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt | 692B Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.pt-BR.vtt | 692B Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt | 694B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt | 695B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt | 695B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.it.vtt | 695B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.ja.vtt | 697B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.it.vtt | 697B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.pt-BR.vtt | 699B Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. M4 L2b 19 Outro V1-nfVnAkndJCY.en.vtt | 700B Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.th.vtt | 700B Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt | 700B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.it.vtt | 702B Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt | 702B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt | 704B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.en.vtt | 704B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.pt-BR.vtt | 705B Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ar.vtt | 706B Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt | 707B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.zh-CN.vtt | 708B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ja.vtt | 708B Part 01-Module 02-Lesson 03_Regression/17. M2L3 15 Summary V1-n2VxcEcw0GY.en.vtt | 710B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ja.vtt | 710B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.zh-CN.vtt | 711B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.it.vtt | 712B Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt | 713B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.en.vtt | 714B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.en.vtt | 715B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.en.vtt | 715B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pl.vtt | 715B Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt | 716B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ja.vtt | 716B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.th.vtt | 717B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ar.vtt | 717B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ja.vtt | 717B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt | 719B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt | 719B Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt | 723B Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.th.vtt | 723B Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.zh-CN.vtt | 724B Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.en.vtt | 727B Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt | 727B Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.en.vtt | 727B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt | 728B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt | 728B Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.th.vtt | 729B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt | 729B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ja.vtt | 730B Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt | 731B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.en.vtt | 734B Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.en.vtt | 734B Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt | 735B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt | 735B Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.pt-BR.vtt | 736B Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ar.vtt | 738B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.en.vtt | 738B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt | 739B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt | 739B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.es-ES.vtt | 741B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt | 741B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.it.vtt | 742B Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt | 742B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.zh-CN.vtt | 744B Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.pt-BR.vtt | 745B Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt | 745B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.zh-CN.vtt | 745B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.es-ES.vtt | 746B Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.pt-BR.vtt | 746B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.es-ES.vtt | 746B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.hr.vtt | 748B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt | 748B Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ja.vtt | 748B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt | 750B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.zh-CN.vtt | 751B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.en.vtt | 752B Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ar.vtt | 752B Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt | 752B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.pt-BR.vtt | 753B Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.en.vtt | 754B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.es-ES.vtt | 757B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.zh-CN.vtt | 759B Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. L3 13 Summary V1-I7XKJf8t_0s.en.vtt | 760B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ja.vtt | 760B Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt | 761B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.en.vtt | 762B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ja.vtt | 762B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt | 763B Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.en.vtt | 763B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.it.vtt | 764B Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ar.vtt | 765B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt | 765B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.zh-CN.vtt | 767B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.it.vtt | 767B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.en.vtt | 768B Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.th.vtt | 768B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt | 769B Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt | 769B Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt | 771B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.th.vtt | 772B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.en.vtt | 772B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en.vtt | 772B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.pt-BR.vtt | 773B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt | 775B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt | 775B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.th.vtt | 777B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.es-ES.vtt | 777B Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.th.vtt | 779B Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt | 780B Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.pt-BR.vtt | 781B Part 01-Module 03-Lesson 04_Portfolio Optimization/13. L4 14 Recap V1-e3qJYCQfJD0.en.vtt | 783B Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt | 783B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt | 785B Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt | 787B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt | 787B Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.en.vtt | 789B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt | 790B Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.en.vtt | 790B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.en.vtt | 790B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt | 790B Part 01-Module 03-Lesson 02_ETFs/11. L2 14 Summary V1-E5br2PiH8kY.en.vtt | 792B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.hr.vtt | 792B Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt | 793B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.it.vtt | 797B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.pt-BR.vtt | 797B Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.en.vtt | 798B Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ar.vtt | 799B Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.en.vtt | 799B Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ar.vtt | 802B Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt | 802B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt | 804B Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt | 804B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt | 804B Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ja.vtt | 805B Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt | 806B Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.zh-CN.vtt | 809B Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.pt-BR.vtt | 810B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.zh-CN.vtt | 812B Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. L1 09 Price Weighting V2-2SFbwJ19NhA.en.vtt | 812B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt | 813B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ja.vtt | 813B Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.th.vtt | 813B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt | 813B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.en.vtt | 815B Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 28 Open End Mutual Funds Handling Withdrawals V2-46NGAQHY-Mc.en.vtt | 816B Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.es-ES.vtt | 817B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt | 817B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt | 818B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.es-ES.vtt | 819B Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ja.vtt | 819B Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ar.vtt | 819B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt | 821B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.es-ES.vtt | 823B Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt | 824B Part 01-Module 01-Lesson 06_Data Processing/01. M1L4 01 Stock Data V2-sN0_IqmMGGA.en.vtt | 825B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.en.vtt | 826B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ja.vtt | 828B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.zh-CN.vtt | 828B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.en.vtt | 828B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ar.vtt | 829B Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt | 831B Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.it.vtt | 832B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ja.vtt | 835B Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.ar.vtt | 836B Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.it.vtt | 837B Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.es-ES.vtt | 837B Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ar.vtt | 838B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.en.vtt | 839B Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt | 840B Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.ar.vtt | 841B Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ja.vtt | 841B Part 01-Module 04-Lesson 01_Factors/10. M4 L1A 09 Overview For Standardizing A Factor V3-0clT0lnrTrU.en.vtt | 842B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ar.vtt | 844B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ar.vtt | 845B Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.es-ES.vtt | 845B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.en.vtt | 846B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt | 846B Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ar.vtt | 847B Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.pt-BR.vtt | 848B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt | 848B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.es-ES.vtt | 850B Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. M1L1 02 Interview W Jonathan V1-AeranuDRL7k.en.vtt | 851B Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.ar.vtt | 851B Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04 Study Groups V1-vmjk1EKR6mM.en.vtt | 853B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.hr.vtt | 854B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.en.vtt | 855B Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.pt-BR.vtt | 856B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.en.vtt | 856B Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 01 Intro V2-mE8OOxkgzy8.en.vtt | 858B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.zh-CN.vtt | 859B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt | 861B Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.zh-CN.vtt | 862B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.pt-BR.vtt | 864B Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. L1 26 Expense Ratios V2-SHZ0AhJq134.en.vtt | 865B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.it.vtt | 866B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt | 866B Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt | 868B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.es-ES.vtt | 869B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.es-ES.vtt | 870B Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 23 Absolute Returns V3-wbb6WSyXLdU.en.vtt | 872B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ja.vtt | 872B Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt | 874B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.en.vtt | 874B Part 01-Module 01-Lesson 05_Market Mechanics/11. M1L3 15 Outro V2-XVvfToYCsmo.en.vtt | 878B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.en.vtt | 879B Part 01-Module 02-Lesson 02_Outliers and Filtering/01. M2L2 01 Intro V1-OGx1aYHMgbs.en.vtt | 879B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.en.vtt | 879B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt | 880B Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.ar.vtt | 882B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt | 883B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.en.vtt | 883B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.pt-BR.vtt | 884B Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.ar.vtt | 885B Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.es-ES.vtt | 885B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.es-ES.vtt | 886B Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ar.vtt | 886B Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.en.vtt | 887B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ja.vtt | 887B Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt | 887B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt | 889B Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt | 890B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.zh-CN.vtt | 891B Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt | 892B Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.ar.vtt | 894B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ar.vtt | 896B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt | 896B Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.en.vtt | 898B Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ar.vtt | 899B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt | 899B Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ar.vtt | 900B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt | 900B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ja.vtt | 902B Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ar.vtt | 903B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt | 905B Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt | 906B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt | 908B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt | 908B Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.th.vtt | 910B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ja.vtt | 911B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt | 912B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt | 913B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt | 913B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt | 914B Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.pt-BR.vtt | 914B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.it.vtt | 915B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt | 918B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt | 918B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif | 919B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt | 919B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif | 919B Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt | 923B Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.zh-CN.vtt | 924B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.hr.vtt | 925B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt | 927B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.ja.vtt | 928B Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04a Knowledge V1-lX_is8cq0Bg.en.vtt | 929B Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt | 930B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.en.vtt | 931B Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt | 933B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt | 935B Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.pt-BR.vtt | 937B Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt | 939B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.en.vtt | 940B Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.hr.vtt | 942B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt | 944B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt | 944B Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.en.vtt | 944B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.it.vtt | 945B Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt | 947B Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt | 947B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.es-ES.vtt | 948B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.es-ES.vtt | 948B Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt | 949B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ja.vtt | 949B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.en.vtt | 952B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ja.vtt | 952B Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.ar.vtt | 953B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt | 953B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt | 953B Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt | 956B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.hr.vtt | 956B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt | 957B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.hr.vtt | 957B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.es-ES.vtt | 957B Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt | 962B Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt | 962B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.en.vtt | 963B Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ar.vtt | 963B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.en.vtt | 964B Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.zh-CN.vtt | 964B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt | 964B Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. M4 L1B 01 Intro To Lesson V1-ff0paDNA75U.en.vtt | 965B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt | 965B Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.zh-CN.vtt | 966B Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.it.vtt | 967B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.es-ES.vtt | 967B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.it.vtt | 969B Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt | 970B Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.th.vtt | 970B Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.zh-CN.vtt | 970B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt | 971B Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ar.vtt | 974B Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.pt-BR.vtt | 974B Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt | 975B Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.zh-CN.vtt | 978B Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt | 979B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.en.vtt | 979B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt | 982B Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ar.vtt | 982B Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.en.vtt | 983B Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt | 983B Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.zh-CN.vtt | 984B Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ja.vtt | 984B Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.zh-CN.vtt | 987B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt | 987B Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt | 988B Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt | 988B Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.en.vtt | 991B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.it.vtt | 994B Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt | 994B Part 01-Module 03-Lesson 02_ETFs/03. L2 04 Commodity ETFs V2-UpgX6INJ6nU.en.vtt | 996B Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.en.vtt | 997B Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.ar.vtt | 999B Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ar.vtt | 1000B Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt | 1002B Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ar.vtt | 1002B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt | 1003B Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt | 1004B Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.zh-CN.vtt | 1007B Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt | 1010B Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt | 1014B Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.pt-BR.vtt | 1014B Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.th.vtt | 1015B Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt | 1017B Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ja.vtt | 1018B Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt | 1020B Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt | 1021B Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.th.vtt | 1021B Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt | 1024B Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt | 1024B Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.th.vtt | 1024B Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt | 1.00KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt | 1.00KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ar.vtt | 1.00KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. M4 L1B 26 Summary V1-yuLQA24Thms.en.vtt | 1.01KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.en.vtt | 1.01KB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt | 1.01KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ar.vtt | 1.01KB Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt | 1.01KB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.zh-CN.vtt | 1.01KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.pt-BR.vtt | 1.02KB Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt | 1.02KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.es-ES.vtt | 1.02KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.zh-CN.vtt | 1.02KB Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt | 1.02KB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt | 1.03KB Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt | 1.03KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt | 1.03KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.en.vtt | 1.03KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.en.vtt | 1.03KB Part 07-Module 01-Lesson 01_Linear Regression/img/gif-1.gif | 1.03KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.en.vtt | 1.04KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt | 1.04KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt | 1.04KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.th.vtt | 1.04KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt | 1.04KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ar.vtt | 1.04KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.ja.vtt | 1.04KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. L1 05 Market Cap V2-PE0UgUc0f0U.en.vtt | 1.04KB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt | 1.05KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.en.vtt | 1.05KB Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt | 1.05KB Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.ar.vtt | 1.05KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt | 1.05KB Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ar.vtt | 1.05KB Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt | 1.05KB Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ar.vtt | 1.05KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.hr.vtt | 1.05KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt | 1.05KB Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ar.vtt | 1.05KB Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ar.vtt | 1.06KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.zh-CN.vtt | 1.06KB Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.en.vtt | 1.06KB Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.zh-CN.vtt | 1.06KB Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt | 1.06KB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt | 1.06KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt | 1.06KB Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt | 1.06KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.es-ES.vtt | 1.07KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt | 1.07KB Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.pt-BR.vtt | 1.07KB Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.ar.vtt | 1.07KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt | 1.07KB Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ar.vtt | 1.07KB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt | 1.07KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.zh-CN.vtt | 1.07KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 04 Indices Describe The Market V2-jNzwxE3el7I.en.vtt | 1.07KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt | 1.08KB Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.en.vtt | 1.08KB Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt | 1.08KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ja.vtt | 1.08KB Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt | 1.08KB Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.th.vtt | 1.08KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.en.vtt | 1.08KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.it.vtt | 1.08KB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ja.vtt | 1.08KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt | 1.08KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt | 1.09KB Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.en.vtt | 1.09KB Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.th.vtt | 1.09KB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt | 1.09KB Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ar.vtt | 1.09KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt | 1.09KB Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.zh-CN.vtt | 1.09KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt | 1.09KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.zh-CN.vtt | 1.09KB Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ar.vtt | 1.09KB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt | 1.09KB Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt | 1.10KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt | 1.10KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ja.vtt | 1.10KB Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt | 1.10KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ja.vtt | 1.10KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.en.vtt | 1.10KB Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.en.vtt | 1.10KB Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.en.vtt | 1.10KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt | 1.11KB Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.en.vtt | 1.11KB Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt | 1.11KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. M4 L3b 21 IVol Generalizing The Volatility Factor V2-Lt1JPjKHPmk.en.vtt | 1.11KB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.es-ES.vtt | 1.11KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.it.vtt | 1.11KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt | 1.11KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.en.vtt | 1.11KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.it.vtt | 1.12KB Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt | 1.12KB Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.zh-CN.vtt | 1.12KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt | 1.12KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt | 1.12KB Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt | 1.12KB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.en.vtt | 1.12KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt | 1.12KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.hr.vtt | 1.12KB Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt | 1.13KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.zh-CN.vtt | 1.13KB Part 07-Module 01-Lesson 01_Linear Regression/img/f4.gif | 1.13KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. L1 25 Net Asset Value V2-hBnY2DmEFo4.en.vtt | 1.13KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ja.vtt | 1.13KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt | 1.13KB Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt | 1.14KB Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt | 1.14KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt | 1.14KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.tr.vtt | 1.14KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt | 1.14KB Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt | 1.14KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt | 1.14KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.ar.vtt | 1.14KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt | 1.14KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt | 1.14KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt | 1.14KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. L1 06 Growth Vs Value V2-ZCjre5YTD0s.en.vtt | 1.14KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.en.vtt | 1.15KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ja.vtt | 1.15KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.th.vtt | 1.15KB Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt | 1.15KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.zh-CN.vtt | 1.15KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt | 1.15KB Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt | 1.15KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt | 1.15KB Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt | 1.16KB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt | 1.16KB Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.th.vtt | 1.16KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt | 1.16KB Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.en.vtt | 1.16KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. L1 20 Mutual Funds V2-LgaylDkS92Y.en.vtt | 1.16KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt | 1.16KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.es-ES.vtt | 1.17KB Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt | 1.17KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.it.vtt | 1.17KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt | 1.17KB Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.en.vtt | 1.17KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.en.vtt | 1.17KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. L3 06 The Covariance Matrix And Quadratic Forms V1-as5lafBZ2CA.en.vtt | 1.17KB Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.th.vtt | 1.17KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.zh-CN.vtt | 1.17KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.zh-CN.vtt | 1.17KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.es-ES.vtt | 1.17KB Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt | 1.17KB Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ar.vtt | 1.18KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt | 1.18KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ar.vtt | 1.18KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt | 1.18KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt | 1.18KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt | 1.18KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ja.vtt | 1.18KB Part 07-Module 01-Lesson 01_Linear Regression/img/e.gif | 1.18KB Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.en.vtt | 1.18KB Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt | 1.18KB Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.pt-BR.vtt | 1.19KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.ar.vtt | 1.19KB Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.th.vtt | 1.19KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt | 1.19KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 03 Indices Are Virtual Portfolios V2-oAd_szbBNWc.en.vtt | 1.19KB Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt | 1.21KB Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.zh-CN.vtt | 1.21KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt | 1.21KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.ar.vtt | 1.21KB Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt | 1.21KB Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt | 1.21KB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt | 1.21KB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt | 1.21KB Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.th.vtt | 1.22KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ja.vtt | 1.22KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt | 1.22KB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ar.vtt | 1.22KB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.en.vtt | 1.22KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt | 1.22KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt | 1.22KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt | 1.23KB Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.en.vtt | 1.23KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt | 1.23KB Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt | 1.23KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. M4 L4 01 Intro V1-9NzZFszX2E4.en.vtt | 1.23KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt | 1.23KB Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt | 1.23KB Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt | 1.24KB Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt | 1.24KB Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.en.vtt | 1.24KB Part 01-Module 01-Lesson 06_Data Processing/13. M1L4 16 Alternate Data V2-DFwu2ysGY8c.en.vtt | 1.24KB Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt | 1.24KB Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt | 1.24KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.en.vtt | 1.24KB Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.pt-BR.vtt | 1.24KB Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.zh-CN.vtt | 1.24KB Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.pt-BR.vtt | 1.25KB Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.pt-BR.vtt | 1.25KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. L1 21 Hedge Funds V4-AgGPqvDFTHw.en.vtt | 1.25KB Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt | 1.26KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.en.vtt | 1.26KB Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt | 1.26KB Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt | 1.26KB Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en-GB.vtt | 1.26KB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ar.vtt | 1.26KB Part 01-Module 03-Lesson 02_ETFs/09. L2 11 Arbitrage V2-yp-CcGrMzYQ.en.vtt | 1.26KB Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ar.vtt | 1.26KB Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt | 1.27KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.en.vtt | 1.27KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt | 1.27KB Part 01-Module 03-Lesson 02_ETFs/07. L2 09 Redeeming Shares V3-ZSVgU7DBarc.en.vtt | 1.27KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt | 1.27KB Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt | 1.27KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ja.vtt | 1.27KB Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt | 1.27KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.es-ES.vtt | 1.27KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt | 1.27KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt | 1.27KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.en.vtt | 1.27KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt | 1.28KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.en.vtt | 1.28KB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.pt-BR.vtt | 1.28KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt | 1.28KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt | 1.28KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.zh-CN.vtt | 1.28KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.es-ES.vtt | 1.28KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04b Project Reviews V1-KJbx9f9VKJE.en.vtt | 1.29KB Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.pt-BR.vtt | 1.29KB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt | 1.29KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt | 1.29KB Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.en.vtt | 1.29KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.en.vtt | 1.29KB Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.en.vtt | 1.29KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.pt-BR.vtt | 1.29KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. L1 15 Calculating Index After Add Or Delete V2-hiAHRE6JY0k.en.vtt | 1.29KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt | 1.30KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt | 1.30KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt | 1.30KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt | 1.30KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt | 1.30KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt | 1.30KB Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt | 1.30KB Part 01-Module 01-Lesson 08_Momentum Trading/14. MV 13 Global Talent Is Equally Distributed V1-QwDJbbBl_48.en.vtt | 1.30KB Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt | 1.31KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.en.vtt | 1.31KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt | 1.31KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt | 1.31KB Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.pt-BR.vtt | 1.31KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt | 1.31KB Part 07-Module 01-Lesson 01_Linear Regression/img/codecogseqn-62.gif | 1.31KB Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.ar.vtt | 1.31KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.ar.vtt | 1.31KB Part 01-Module 01-Lesson 05_Market Mechanics/01. M1L3 01 Intro V4-LE-4Xf8lzHk.en.vtt | 1.31KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.es-ES.vtt | 1.32KB Part 01-Module 03-Lesson 02_ETFs/03. L2 02 Commodities V2-gc_GMqbCC2Q.en.vtt | 1.32KB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.zh-CN.vtt | 1.32KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ar.vtt | 1.32KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ja.vtt | 1.32KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.zh-CN.vtt | 1.32KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt | 1.33KB Part 01-Module 02-Lesson 03_Regression/09. M2L3 08 Heteroskedasticity V2-wias9OZ1tU4.en.vtt | 1.33KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt | 1.33KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.pt-BR.vtt | 1.33KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt | 1.33KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt | 1.33KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt | 1.33KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 17 Active Vs Passive V2-QzoHmUzJ5zw.en.vtt | 1.33KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt | 1.34KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. M2L6 20 Summary V2-wuzha8SU2jw.en.vtt | 1.34KB Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt | 1.34KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt | 1.34KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt | 1.34KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt | 1.34KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt | 1.34KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.pt-BR.vtt | 1.35KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.es-ES.vtt | 1.35KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.pt-BR.vtt | 1.35KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt | 1.35KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.en.vtt | 1.35KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt | 1.35KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 00 Intro V2-JA4WBd6sHF4.en.vtt | 1.35KB Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt | 1.35KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. M4 L2A 15 Time Series Risk Model V2-Lz3RMLmov8o.en.vtt | 1.35KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.ar.vtt | 1.35KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.zh-CN.vtt | 1.36KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.zh-CN.vtt | 1.36KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.hr.vtt | 1.36KB Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt | 1.36KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt | 1.37KB Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt | 1.37KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt | 1.37KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. M1L1 01 Welcome V1-W2R32yXgwcg.en.vtt | 1.37KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.th.vtt | 1.37KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.en.vtt | 1.37KB Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt | 1.37KB Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.ar.vtt | 1.37KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. L1 08 SP Index Categories V2-D3VGIvti71g.en.vtt | 1.37KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. M2L6 11 Clustering Stocks V3-LkgCK_qPqWE.en.vtt | 1.37KB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.zh-CN.vtt | 1.37KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ja.vtt | 1.38KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. M4 L3b 22 Summary V2-Tq8yVPEHxXs.en.vtt | 1.38KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.it.vtt | 1.38KB Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt | 1.38KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.en.vtt | 1.38KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.en.vtt | 1.38KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.zh-CN.vtt | 1.38KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. M4 L1B 22 Alternative Data V1-p6NxGZnkrdc.en.vtt | 1.38KB Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.en.vtt | 1.38KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt | 1.39KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt | 1.39KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt | 1.39KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt | 1.39KB Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt | 1.39KB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt | 1.39KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ja.vtt | 1.39KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.zh-CN.vtt | 1.39KB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ar.vtt | 1.39KB Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.en.vtt | 1.40KB Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt | 1.40KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt | 1.40KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt | 1.40KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.es-ES.vtt | 1.41KB Part 07-Module 01-Lesson 01_Linear Regression/img/y.gif | 1.41KB Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt | 1.41KB Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt | 1.41KB Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.ar.vtt | 1.42KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt | 1.42KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt | 1.42KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ar.vtt | 1.42KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.en.vtt | 1.42KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.en.vtt | 1.42KB Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt | 1.42KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt | 1.42KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt | 1.42KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.it.vtt | 1.42KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.en.vtt | 1.43KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.zh-CN.vtt | 1.43KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt | 1.43KB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.zh-CN.vtt | 1.43KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt | 1.43KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.en.vtt | 1.43KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt | 1.43KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt | 1.43KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt | 1.44KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.ru.vtt | 1.44KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.en.vtt | 1.44KB Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.pt-BR.vtt | 1.44KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.pt-BR.vtt | 1.44KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt | 1.44KB Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt | 1.44KB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.pt-BR.vtt | 1.45KB Part 01-Module 01-Lesson 06_Data Processing/14. MV 06 Our Goal Is To Help You Meet Your Goals V1--pSppDzJRu8.en.vtt | 1.45KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.es-ES.vtt | 1.45KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt | 1.45KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.ar.vtt | 1.45KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt | 1.45KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ar.vtt | 1.45KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.pt-BR.vtt | 1.45KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt | 1.45KB Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt | 1.46KB Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt | 1.46KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt | 1.46KB Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt | 1.46KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt | 1.46KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt | 1.46KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ja.vtt | 1.46KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.pt-BR.vtt | 1.46KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt | 1.46KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.en.vtt | 1.47KB Part 01-Module 03-Lesson 02_ETFs/08. L2 10 Lower Operational Costs And Taxes V2-UlJusglK0h0.en.vtt | 1.47KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. L1 19 Smart Beta V2-Rc9NEmNMzk8.en.vtt | 1.47KB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.pt-BR.vtt | 1.48KB Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt | 1.48KB Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt | 1.48KB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.en.vtt | 1.48KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.en.vtt | 1.48KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.en.vtt | 1.49KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.en.vtt | 1.49KB Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.zh-CN.vtt | 1.49KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.zh-CN.vtt | 1.49KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt | 1.50KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.hr.vtt | 1.50KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. L1 10 Market Cap Weighting V2-7qVVA5yLFnY.en.vtt | 1.50KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ar.vtt | 1.50KB Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt | 1.50KB Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt | 1.50KB Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.en.vtt | 1.50KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.zh-CN.vtt | 1.51KB Part 01-Module 02-Lesson 03_Regression/14. M2L3 12 Multivariate Linear Regression V3-WbCGVF7SAN0.en.vtt | 1.51KB Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.zh-CN.vtt | 1.51KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt | 1.51KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt | 1.51KB Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.pt-BR.vtt | 1.51KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.zh-CN.vtt | 1.51KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt | 1.51KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 01 Intro In The First Five V1-magg5AVJRVA.en.vtt | 1.52KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ja.vtt | 1.52KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt | 1.52KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt | 1.53KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.pt-BR.vtt | 1.53KB Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt | 1.53KB Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt | 1.53KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt | 1.53KB Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt | 1.53KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt | 1.53KB Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt | 1.53KB Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.ar.vtt | 1.54KB Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt | 1.54KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt | 1.54KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt | 1.54KB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.pt-BR.vtt | 1.54KB Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.pt-BR.vtt | 1.54KB Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.th.vtt | 1.54KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.zh-CN.vtt | 1.55KB Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.zh-CN.vtt | 1.55KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.es-ES.vtt | 1.55KB Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.en.vtt | 1.55KB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.en.vtt | 1.55KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt | 1.55KB Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt | 1.56KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. M4 L3b 13 Skewness And Momentum Conditional Factor V2-cMLTVZFKEm0.en.vtt | 1.56KB Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt | 1.56KB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.pt-BR.vtt | 1.56KB Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt | 1.56KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt | 1.56KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt | 1.57KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt | 1.57KB Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.zh-CN.vtt | 1.57KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.pt-BR.vtt | 1.57KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. MV 12 Transition To Project 03 V1-ClzlNlWqMQI.en.vtt | 1.57KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt | 1.58KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.en.vtt | 1.58KB Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt | 1.58KB Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt | 1.58KB Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt | 1.58KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt | 1.59KB Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.en.vtt | 1.59KB Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt | 1.59KB Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt | 1.59KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt | 1.59KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt | 1.59KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ja.vtt | 1.59KB Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt | 1.59KB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.ar.vtt | 1.59KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt | 1.59KB Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.en.vtt | 1.59KB Part 07-Module 01-Lesson 01_Linear Regression/img/f6.gif | 1.60KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt | 1.60KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt | 1.60KB Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.th.vtt | 1.60KB Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.ar.vtt | 1.60KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt | 1.60KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt | 1.60KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.zh-CN.vtt | 1.60KB Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt | 1.60KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt | 1.61KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.en.vtt | 1.61KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt | 1.61KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt | 1.61KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt | 1.61KB Part 01-Module 01-Lesson 06_Data Processing/08. M1L4 11 Survivor Bias V2-39MeCCw5ndM.en.vtt | 1.61KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.en.vtt | 1.61KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt | 1.61KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt | 1.61KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt | 1.61KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt | 1.61KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. M4 L4 20 Outro V1-c3J8t6q2BGo.en.vtt | 1.62KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt | 1.62KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt | 1.62KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ja.vtt | 1.62KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ar.vtt | 1.62KB Part 01-Module 04-Lesson 06_Alpha Factors/48. M4 L3a 21 Its All Relative V2-VBcOrT7TuFA.en.vtt | 1.63KB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.en.vtt | 1.63KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.en.vtt | 1.63KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt | 1.63KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt | 1.64KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.en.vtt | 1.64KB Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.zh-CN.vtt | 1.64KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt | 1.64KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt | 1.64KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.it.vtt | 1.64KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.th.vtt | 1.64KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.en.vtt | 1.64KB Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.en.vtt | 1.64KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.zh-CN.vtt | 1.64KB Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt | 1.64KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt | 1.65KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt | 1.65KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt | 1.65KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt | 1.65KB Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt | 1.65KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. M4 L2b 02 Vector Two Ways V3-mlw6FnCUloU.en.vtt | 1.65KB Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt | 1.66KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt | 1.66KB Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt | 1.66KB Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.en.vtt | 1.67KB Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt | 1.67KB Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt | 1.67KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.en.vtt | 1.67KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt | 1.68KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ar.vtt | 1.68KB Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt | 1.68KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. M4 03 Coming In Term II V1-2jF5J8MIdqc.en.vtt | 1.68KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.hr.vtt | 1.68KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ja.vtt | 1.68KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt | 1.69KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.es-ES.vtt | 1.69KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt | 1.69KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt | 1.69KB Part 01-Module 02-Lesson 01_Quant Workflow/01. MV 05 Intro To Module 2 V1-92JzOXda9Q8.en.vtt | 1.69KB Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt | 1.69KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.en.vtt | 1.69KB Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.th.vtt | 1.69KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. L1 11 Adding Or Removing From An Index V2-_bWIZWa20j8.en.vtt | 1.69KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ar.vtt | 1.69KB Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt | 1.70KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.zh-CN.vtt | 1.70KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ja.vtt | 1.70KB Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt | 1.70KB Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt | 1.70KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt | 1.70KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt | 1.70KB Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt | 1.70KB Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt | 1.71KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt | 1.71KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt | 1.71KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.pt-BR.vtt | 1.71KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.pt-BR.vtt | 1.71KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.en.vtt | 1.72KB Part 01-Module 02-Lesson 01_Quant Workflow/03. M2L1 02 Quant Workflow V3-lZfCCRv2rEE.en.vtt | 1.72KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt | 1.72KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt | 1.73KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ar.vtt | 1.73KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt | 1.73KB Part 01-Module 04-Lesson 06_Alpha Factors/27. M4 L3a 13 Sharpe Ratio V4-W8nfg1fkloA.en.vtt | 1.73KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt | 1.73KB Part 01-Module 03-Lesson 02_ETFs/03. L2 05 International ETFs V2-OL2p8S-82mY.en.vtt | 1.73KB Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt | 1.73KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt | 1.73KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt | 1.73KB Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.ar.vtt | 1.74KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt | 1.74KB Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt | 1.74KB Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt | 1.74KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt | 1.74KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. L1 16 Funds V2-s9f2Bzc9lnk.en.vtt | 1.74KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.en.vtt | 1.74KB Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.en.vtt | 1.74KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt | 1.74KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. L1 32 Summary V1-Pt2sVftdwS0.en.vtt | 1.75KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt | 1.75KB Part 01-Module 01-Lesson 08_Momentum Trading/13. M1L6 12 Finding Alpha V1-r8lfWVhfQC0.en.vtt | 1.75KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt | 1.75KB Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt | 1.75KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt | 1.75KB Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt | 1.75KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.pt-BR.vtt | 1.75KB Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt | 1.75KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.zh-CN.vtt | 1.75KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt | 1.76KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.it.vtt | 1.76KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.en.vtt | 1.76KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.en.vtt | 1.76KB Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.en.vtt | 1.76KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 18 Alpha And Beta V3-CcVdfrr5nD8.en.vtt | 1.76KB Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.zh-CN.vtt | 1.76KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ja.vtt | 1.76KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt | 1.77KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt | 1.77KB Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.en.vtt | 1.77KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 02 Indices V2-BRv5B78YBGs.en.vtt | 1.77KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt | 1.77KB Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt | 1.77KB Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.en.vtt | 1.77KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 22 Relative Returns V2-m4MvYRlyPoU.en.vtt | 1.77KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.zh-CN.vtt | 1.78KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.zh-CN.vtt | 1.78KB Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.th.vtt | 1.78KB Part 01-Module 02-Lesson 03_Regression/15. M2L3 14 Regression In Trading V2-bcOGRWxg7qQ.en.vtt | 1.78KB Part 01-Module 03-Lesson 02_ETFs/01. L2 01 Intro V2-utlPzT8MEsM.en.vtt | 1.78KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ja.vtt | 1.78KB Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt | 1.79KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt | 1.79KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.zh-CN.vtt | 1.79KB Part 01-Module 03-Lesson 02_ETFs/10. L2 13 Realigning ETF Share Prices V2-aRXJxjQQSiI.en.vtt | 1.79KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.en.vtt | 1.79KB Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.en.vtt | 1.79KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.es-ES.vtt | 1.79KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.en.vtt | 1.79KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.zh-CN.vtt | 1.79KB Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.pt-BR.vtt | 1.79KB Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.en.vtt | 1.80KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt | 1.80KB Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt | 1.80KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.pt-BR.vtt | 1.80KB Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt | 1.80KB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt | 1.81KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt | 1.81KB Part 01-Module 04-Lesson 03_Risk Factor Models/17. M4 L2A 11 Types Of Risk Models V1-SHj2VzJggAE.en.vtt | 1.81KB Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt | 1.81KB Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt | 1.81KB Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt | 1.81KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt | 1.82KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt | 1.82KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt | 1.82KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. M4 L3b 15 IVol Arbitrage And Efficient Pricing Of Stocks V3-7Fqe5DP6iG8.en.vtt | 1.83KB Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt | 1.83KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt | 1.83KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.ar.vtt | 1.83KB Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.zh-CN.vtt | 1.84KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.th.vtt | 1.84KB Part 01-Module 03-Lesson 02_ETFs/04. L2 06 Hedging V3-4k1bdohhawI.en.vtt | 1.85KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ar.vtt | 1.85KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.es-ES.vtt | 1.85KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.en.vtt | 1.85KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ja.vtt | 1.85KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ja.vtt | 1.86KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt | 1.86KB Part 01-Module 03-Lesson 02_ETFs/05. L2 07 ETF Sponsor V2-v5vfAP1nJ10.en.vtt | 1.86KB Part 01-Module 04-Lesson 03_Risk Factor Models/13. M4 L2A 09 Variance Of 2 Stocks Part 2 V4-tSMutw0f6OE.en.vtt | 1.86KB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.ar.vtt | 1.86KB Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt | 1.86KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.en.vtt | 1.86KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.zh-CN.vtt | 1.86KB Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt | 1.87KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.it.vtt | 1.87KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. M4 L1B 18 EventDriven Factors V1-2mnwjChH2hg.en.vtt | 1.87KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 29 Open End Funds Holding Cash For Withdrawals V3-RU8-ZRBJ2Cw.en.vtt | 1.87KB Part 01-Module 04-Lesson 03_Risk Factor Models/11. M4 L2A 07 Taking Constants Out Of Variance And Covariance Optional V3-M9R9870m_o0.en.vtt | 1.87KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt | 1.87KB Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt | 1.88KB Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt | 1.88KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt | 1.88KB Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt | 1.88KB Part 07-Module 01-Lesson 01_Linear Regression/img/f2.gif | 1.88KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.en.vtt | 1.89KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ar.vtt | 1.89KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.en.vtt | 1.89KB Part 01-Module 01-Lesson 05_Market Mechanics/10. M1L3 14 Markets In Different Timezones V3-wmmEpPM-HVs.en.vtt | 1.90KB Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt | 1.90KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.en.vtt | 1.90KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt | 1.90KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt | 1.90KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.zh-CN.vtt | 1.90KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.en.vtt | 1.90KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.ar.vtt | 1.91KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt | 1.91KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.en.vtt | 1.91KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. M4 L3b 14 IVol Value And Idiosyncratic Volatility Overview V2-h7vamh2FPMs.en.vtt | 1.91KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. L1 12 How An Index Is Constructed V2-dsbi4dvdU9c.en.vtt | 1.91KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt | 1.91KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. M4 L2A 27 Summary V1-rdqINNkTlqs.en.vtt | 1.91KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.ar.vtt | 1.91KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt | 1.91KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.en.vtt | 1.92KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.pt-BR.vtt | 1.92KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. L1 13 Hang Seng Index Construction V2-rdGdC-meRLU.en.vtt | 1.92KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt | 1.92KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt | 1.92KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. L1 24 Hedging Strategies V3-8bzw4ZMGpWU.en.vtt | 1.93KB Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt | 1.93KB Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt | 1.93KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt | 1.93KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. M4 L2b 01 PCA Statistical Risk Model V1-lDxqJ0JYUzs.en.vtt | 1.94KB Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt | 1.94KB Part 01-Module 01-Lesson 08_Momentum Trading/01. M1L6 01 Designing A Trading Strategy V4-O7c6bPXBUsU.en.vtt | 1.94KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt | 1.94KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.th.vtt | 1.94KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. L3 01 Intro V1-PxLJniuGyC0.en.vtt | 1.95KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt | 1.95KB Part 01-Module 01-Lesson 05_Market Mechanics/02. M1L3 02 Farmers Market V3-i_itXOdetCc.en.vtt | 1.96KB Part 01-Module 03-Lesson 02_ETFs/02. L2 12 Shortcomings Of Mutual Funds V2-oEqsaex31Qg.en.vtt | 1.96KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt | 1.97KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt | 1.97KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.zh-CN.vtt | 1.97KB Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.zh-CN.vtt | 1.97KB Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt | 1.97KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. M4 L2b 13 Principal Components V3-XtecKk58CLs.en.vtt | 1.97KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.pt-BR.vtt | 1.97KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ar.vtt | 1.97KB Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt | 1.97KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.es-ES.vtt | 1.98KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt | 1.98KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.zh-CN.vtt | 1.98KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt | 1.98KB Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.en.vtt | 1.99KB Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt | 1.99KB Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt | 1.99KB Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.pt-BR.vtt | 1.99KB Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt | 1.99KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt | 1.99KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.pt.vtt | 1.99KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.pt-BR.vtt | 1.99KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.pt-PT.vtt | 1.99KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.it.vtt | 1.99KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.ja.vtt | 1.99KB Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.ar.vtt | 2.00KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt | 2.00KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.ar.vtt | 2.00KB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.th.vtt | 2.00KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ar.vtt | 2.01KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.es-ES.vtt | 2.01KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt | 2.01KB Part 07-Module 01-Lesson 01_Linear Regression/img/f1.gif | 2.01KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ar.vtt | 2.01KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ja.vtt | 2.01KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.zh-CN.vtt | 2.02KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.en.vtt | 2.02KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.en.vtt | 2.02KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt | 2.02KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt | 2.02KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt | 2.03KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt | 2.03KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt | 2.03KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ar.vtt | 2.04KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt | 2.04KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt | 2.04KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.th.vtt | 2.05KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.en.vtt | 2.05KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.en.vtt | 2.05KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. L1 07 Ratios V2-Dfbwep-tkok.en.vtt | 2.05KB Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.en.vtt | 2.05KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. M4 L1B 16 Fundamentals V1-rPii5-ry8nc.en.vtt | 2.06KB Part 01-Module 04-Lesson 06_Alpha Factors/38. M4 L3a 171 Turnover As Proxy For Real World Constraints V2-6xo8sZjoSVk.en.vtt | 2.06KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/18. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.en.vtt | 2.06KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt | 2.07KB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.ar.vtt | 2.07KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt | 2.07KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt | 2.07KB Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.zh-CN.vtt | 2.07KB Part 07-Module 01-Lesson 01_Linear Regression/img/codecogseqn-61.gif | 2.07KB Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt | 2.07KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. M4 L2b 11 Writing It Down Pt 4 V3-7XO-syqIpCE.en.vtt | 2.07KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.es.vtt | 2.08KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt | 2.08KB Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt | 2.08KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt | 2.08KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.es-ES.vtt | 2.08KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt | 2.08KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.ar.vtt | 2.08KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif | 2.09KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif | 2.09KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif | 2.09KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif | 2.09KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.en.vtt | 2.09KB Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt | 2.09KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt | 2.09KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.en.vtt | 2.09KB Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt | 2.10KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.en.vtt | 2.10KB Part 01-Module 02-Lesson 04_Time Series Modeling/01. M2L4 01 Time Series Modeling V4-QeIu7GMZl20.en.vtt | 2.10KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. M4 L3b 06 Winners And Losers In Momentum Investing V2-84ygzbLENbE.en.vtt | 2.10KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt | 2.10KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt | 2.10KB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.ar.vtt | 2.11KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.it.vtt | 2.11KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.en.vtt | 2.11KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.ja.vtt | 2.12KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ar.vtt | 2.12KB Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.en.vtt | 2.12KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.en.vtt | 2.12KB Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.pt-BR.vtt | 2.12KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt | 2.12KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt | 2.12KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.zh-CN.vtt | 2.12KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt | 2.12KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt | 2.12KB Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.zh-CN.vtt | 2.12KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt | 2.12KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt | 2.13KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.es-ES.vtt | 2.13KB Part 01-Module 03-Lesson 02_ETFs/10. L2 12 Misaligned ETF Pricing V3-5-pBZ3fyv6I.en.vtt | 2.13KB Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.zh-CN.vtt | 2.13KB Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.en.vtt | 2.13KB Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt | 2.13KB Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.zh-CN.vtt | 2.13KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt | 2.14KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt | 2.14KB Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt | 2.14KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.en.vtt | 2.14KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt | 2.14KB Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt | 2.14KB Part 01-Module 02-Lesson 02_Outliers and Filtering/05. M2L2 04 Spotting Outliers In Raw Data V3-kFIB0YIW1TQ.en.vtt | 2.14KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt | 2.16KB Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt | 2.17KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt | 2.17KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt | 2.17KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.en.vtt | 2.17KB Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.en.vtt | 2.17KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.en.vtt | 2.17KB Part 01-Module 04-Lesson 03_Risk Factor Models/08. M4 L2A 05 Covariance Matrix Of Factors V3-llA1A0vjSuI.en.vtt | 2.17KB Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt | 2.18KB Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt | 2.18KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. M4 L2A 25 Specific Variance V2-JwA9g3NBglE.en.vtt | 2.18KB Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt | 2.18KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.pt-BR.vtt | 2.19KB Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt | 2.19KB Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.ar.vtt | 2.19KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt | 2.19KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt | 2.19KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.es-ES.vtt | 2.19KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ar.vtt | 2.19KB Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt | 2.20KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.th.vtt | 2.20KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt | 2.20KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ar.vtt | 2.21KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. L3 03 Portfolio Mean V3-vozlctvug7I.en.vtt | 2.21KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt | 2.21KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt | 2.21KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt | 2.21KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt | 2.21KB Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt | 2.21KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. M4 L1B 19 Index Changes V1-C7QNfPZBXXo.en.vtt | 2.21KB Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt | 2.21KB Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt | 2.21KB Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt | 2.21KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt | 2.22KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt | 2.22KB Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.pt-BR.vtt | 2.22KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 01 Stocks V2-XHo5iyxDxOQ.en.vtt | 2.22KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. M4 L2A 22 Cross Sectional Risk Model A Different Approach V2-LauZ7h4bgKE.en.vtt | 2.22KB Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt | 2.22KB Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt | 2.22KB Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.en.vtt | 2.23KB Part 01-Module 02-Lesson 02_Outliers and Filtering/09. M2L2 08 Generating Robust Trading Signals V3-1ikkZmVkjl0.en.vtt | 2.23KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt | 2.23KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt | 2.23KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt | 2.23KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. M4 L2A 14 Time Series Risk Model Specific Variance V2-I0uJLfh_OgQ.en.vtt | 2.24KB Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.ar.vtt | 2.24KB Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt | 2.24KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt | 2.25KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. L1 30 ClosedEnd Mutual Funds V3-y2VhtrF6vdc.en.vtt | 2.25KB Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt | 2.25KB Part 01-Module 04-Lesson 06_Alpha Factors/03. M4 L3a 02 Alpha Factors Versus Risk Factor Modeling V2-qsahBvhVTkk.en.vtt | 2.25KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt | 2.26KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt | 2.26KB Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt | 2.26KB Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt | 2.26KB Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt | 2.26KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt | 2.26KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.ar.vtt | 2.27KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ar.vtt | 2.27KB Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.zh-CN.vtt | 2.27KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt | 2.28KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. M4 L3b 16 IVol Arbitrage Risk V3-rKtJ3iAYYns.en.vtt | 2.28KB Part 01-Module 01-Lesson 06_Data Processing/02. M1L4 02 Market Data V5-9aEp374GsgQ.en.vtt | 2.28KB Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt | 2.28KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt | 2.28KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt | 2.28KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.zh-CN.vtt | 2.29KB Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.zh-CN.vtt | 2.29KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt | 2.30KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt | 2.30KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.zh-CN.vtt | 2.30KB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt | 2.30KB Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.zh-CN.vtt | 2.30KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.en.vtt | 2.30KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. M4 L3b 05 Overnight Returns Methods Quantile Analysis V3-4Js3mghq2mU.en.vtt | 2.30KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt | 2.30KB Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt | 2.30KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt | 2.30KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt | 2.30KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt | 2.30KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. L1 27 OpenEnd Mutual Funds V2-T4_mmjEKUAo.en.vtt | 2.30KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt | 2.31KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.en.vtt | 2.31KB Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt | 2.31KB Part 01-Module 02-Lesson 03_Regression/04. M2L3 04 Parameters Of A Distribution V3--akdmiLDny4.en.vtt | 2.32KB Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.zh-CN.vtt | 2.32KB Part 01-Module 04-Lesson 06_Alpha Factors/23. M4 L3a 11 Universe Construction Rule V3-Cr0-k7gUSNg.en.vtt | 2.33KB Part 01-Module 03-Lesson 02_ETFs/03. L2 03 Commodity Futures V3-qvSubjxMGJ0.en.vtt | 2.33KB Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt | 2.33KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt | 2.33KB Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.en.vtt | 2.34KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. M4 L2A 13 Time Series Risk Model Factor Exposure V4-WPBSMptBrfw.en.vtt | 2.34KB Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt | 2.34KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt | 2.34KB Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt | 2.34KB Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.en.vtt | 2.35KB Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt | 2.35KB Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt | 2.35KB Part 01-Module 04-Lesson 06_Alpha Factors/10. M4 L3a 07 Ranking Part 2 V2-uwPUV5LBhWY.en.vtt | 2.35KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt | 2.35KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt | 2.35KB Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt | 2.36KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.en.vtt | 2.36KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ja.vtt | 2.36KB Part 01-Module 04-Lesson 03_Risk Factor Models/03. M4 L2A 02 Motivation For Risk Factor Model V2-jAQRjxK8PyQ.en.vtt | 2.36KB Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt | 2.36KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. M4 L3b 02 Overnight Returns Abstract V2-q5xidwa5W8w.en.vtt | 2.36KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt | 2.36KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. M4 L4 06 Standard Constraints V4-OPBKsNQPr6I.en.vtt | 2.37KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt | 2.37KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt | 2.37KB Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt | 2.37KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt | 2.37KB Part 01-Module 04-Lesson 06_Alpha Factors/45. M4 L3a 19 Quantiles Academic Research Vs Practitioners V2-AwL7cV2VyhM.en.vtt | 2.38KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt | 2.38KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt | 2.38KB Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.en.vtt | 2.38KB Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt | 2.38KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. M4 L3b 01 Case Studies Intro V3-oWWrWbzDi2k.en.vtt | 2.39KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt | 2.40KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.en.vtt | 2.40KB Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt | 2.40KB Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt | 2.41KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt | 2.41KB Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt | 2.41KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt | 2.41KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.zh-CN.vtt | 2.41KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt | 2.41KB Part 01-Module 02-Lesson 03_Regression/01. M2L3 01 Intro V4-C7vWJH05tKA.en.vtt | 2.41KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt | 2.42KB Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 02 Returns V6-PngIo6G73Z8.en.vtt | 2.42KB Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt | 2.42KB Part 01-Module 01-Lesson 05_Market Mechanics/05. M1L3 08 Tick Data V4-2O0eSKmI6YQ.en.vtt | 2.42KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt | 2.42KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt | 2.42KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.en.vtt | 2.42KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. M4 L3b 19 IVol Quantamental Investing V2-K6Ud6gams-U.en.vtt | 2.42KB Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt | 2.42KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. M4 01 Intro To Project 4 V1-7goOG7CdUjU.en.vtt | 2.42KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.ar.vtt | 2.42KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.zh-CN.vtt | 2.43KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt | 2.43KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ar.vtt | 2.43KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.pt-BR.vtt | 2.44KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. M4 L1B 04 Factor Model Assumptions V3-qEu3m_3eGWk.en.vtt | 2.44KB Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt | 2.45KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt | 2.45KB Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt | 2.45KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.pt-BR.vtt | 2.45KB Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt | 2.45KB Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt | 2.45KB Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt | 2.46KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt | 2.46KB Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt | 2.47KB Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.pt-BR.vtt | 2.47KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ar.vtt | 2.47KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt | 2.47KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. L1 31 Transaction Costs V2-JGYAv7tQpyY.en.vtt | 2.48KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.en.vtt | 2.48KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. M4 L1B 11 How An Alpha Factor Becomes A Risk Factor Part 1 V3-p0cTudt8kXI.en.vtt | 2.48KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ar.vtt | 2.48KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. M4 L1B 08 Risk Factors V Alpha Factors Part 2 V2-AApfsuSpnMY.en.vtt | 2.48KB Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt | 2.49KB Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.en.vtt | 2.49KB Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt | 2.50KB Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt | 2.50KB Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt | 2.50KB Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.en.vtt | 2.50KB Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt | 2.50KB Part 01-Module 02-Lesson 05_Volatility/06. M2L5 06 Rolling Windows V3-4EuMKqeNXA0.en.vtt | 2.50KB Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt | 2.51KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt | 2.51KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.zh-CN.vtt | 2.51KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt | 2.51KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt | 2.51KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt | 2.52KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. M4 L4 02 Setting Up The Problem Alphas V5-6GeyU-thC4U.en.vtt | 2.52KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt | 2.52KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt | 2.52KB Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.en.vtt | 2.52KB Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.zh-CN.vtt | 2.53KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. M4 L1B 13 Momentum Or Reversal V3-izTAHVF6V_g.en.vtt | 2.53KB Part 01-Module 01-Lesson 05_Market Mechanics/04. M1L3 04 Liquidity V4-KNVQeH6Y_YA.en.vtt | 2.53KB Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt | 2.54KB Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt | 2.54KB Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.pt-BR.vtt | 2.54KB Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.en.vtt | 2.54KB Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.pt-BR.vtt | 2.55KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt | 2.55KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt | 2.55KB Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.pt-BR.vtt | 2.55KB Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt | 2.55KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt | 2.56KB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.th.vtt | 2.56KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt | 2.56KB Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt | 2.56KB Part 01-Module 04-Lesson 06_Alpha Factors/37. M4 L3a 162 Real World Constraints Transaction Costs V2-HAif7xSh8z0.en.vtt | 2.56KB Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt | 2.57KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.zh-CN.vtt | 2.57KB Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt | 2.57KB Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt | 2.57KB Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.en.vtt | 2.58KB Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt | 2.58KB Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.zh-CN.vtt | 2.58KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt | 2.58KB Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt | 2.58KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt | 2.58KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.zh-CN.vtt | 2.59KB Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.en.vtt | 2.59KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt | 2.59KB Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.zh-CN.vtt | 2.59KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt | 2.59KB Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.zh-CN.vtt | 2.59KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. M4 L2b 10 Writing It Down Pt 3 V3-kSl0j4QIMIU.en.vtt | 2.59KB Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt | 2.60KB Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt | 2.60KB Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt | 2.60KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ar.vtt | 2.60KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ar.vtt | 2.60KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.ar.vtt | 2.60KB Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt | 2.61KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.ar.vtt | 2.61KB Part 01-Module 02-Lesson 05_Volatility/13. M2L5 13 Breakout Strategies V4-9eamk40DMu0.en.vtt | 2.62KB Part 01-Module 04-Lesson 01_Factors/07. M4 L1A 06 Demean Part 2 V2-aaj1QVsSCIs.en.vtt | 2.62KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.pt-BR.vtt | 2.63KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.zh-CN.vtt | 2.63KB Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt | 2.63KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. M4 L2A 21 Cross Sectional Risk Model V3-mpnRAt8qUus.en.vtt | 2.63KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.en.vtt | 2.63KB Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.en.vtt | 2.63KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.en.vtt | 2.63KB Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.ar.vtt | 2.63KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.zh-CN.vtt | 2.63KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.en.vtt | 2.63KB Part 01-Module 02-Lesson 03_Regression/18. MV 14 What Happens In Your Brain V1-ioDP7ndd40Y.en.vtt | 2.63KB Part 01-Module 02-Lesson 04_Time Series Modeling/07. M2L4 08 Particle Filter V4-4KhDUAvwI74.en.vtt | 2.63KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt | 2.63KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt | 2.64KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. M4 L4 08 Factor Exposure And Position Constraints V3-wMY4zI5zLSM.en.vtt | 2.64KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt | 2.64KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt | 2.64KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt | 2.64KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt | 2.64KB Part 01-Module 04-Lesson 03_Risk Factor Models/10. M4 L2A 06 Variance Of One Stock V3-rxaABg4wVZo.en.vtt | 2.64KB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt | 2.64KB Part 01-Module 03-Lesson 02_ETFs/09. L2 11 2 Arbitrage Farmers Market V1-hHxp16mQNGA.en.vtt | 2.64KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. M4 L2A 19 Fama French SMB And HML V2-fnncnimScFc.en.vtt | 2.65KB Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt | 2.65KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt | 2.66KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt | 2.66KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.en.vtt | 2.66KB Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt | 2.66KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt | 2.66KB Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.en.vtt | 2.67KB Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.zh-CN.vtt | 2.67KB Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt | 2.68KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt | 2.68KB Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt | 2.68KB Part 01-Module 01-Lesson 08_Momentum Trading/02. M1L6 02 Momentumbased Signals V4-RedwbmYg6e4.en.vtt | 2.68KB Part 01-Module 04-Lesson 06_Alpha Factors/36. M4 L3a 161 Real World Constraints Liquidity V3-eu0YZRMu_3w.en.vtt | 2.69KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.zh-CN.vtt | 2.69KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. M4 L2b 08 Writing It Down Pt 1 V3-NyDNFqm8c_s.en.vtt | 2.69KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.pt-BR.vtt | 2.69KB Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt | 2.70KB Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt | 2.70KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt | 2.70KB Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.en.vtt | 2.70KB Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt | 2.70KB Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt | 2.70KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt | 2.70KB Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.pt-BR.vtt | 2.70KB Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.en.vtt | 2.70KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.en.vtt | 2.70KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.en.vtt | 2.70KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. M2L6 07 Finding Pairs To Trade V4-6hQtoElcnGM.en.vtt | 2.71KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.en.vtt | 2.71KB Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt | 2.71KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ar.vtt | 2.71KB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt | 2.72KB Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.ar.vtt | 2.72KB Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt | 2.73KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.th.vtt | 2.73KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/13. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.en.vtt | 2.73KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ja.vtt | 2.73KB Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt | 2.73KB Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt | 2.74KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.en.vtt | 2.74KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt | 2.74KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt | 2.74KB Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt | 2.74KB Part 01-Module 04-Lesson 06_Alpha Factors/07. M4 L3a 052 Controlling For Risk Within An Alpha Factor Part 2 V2-Ks8HiHcflPs.en.vtt | 2.75KB Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt | 2.75KB Part 01-Module 04-Lesson 06_Alpha Factors/06. M4 L3a 051 Controlling For Risk Within An Alpha Factor Part 1 V3-raeVfAbBXnA.en.vtt | 2.75KB Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt | 2.76KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt | 2.76KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt | 2.76KB Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt | 2.76KB Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 1 V5-cnJK8c2zfq4.en.vtt | 2.77KB Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt | 2.77KB Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.en.vtt | 2.78KB Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt | 2.78KB Part 01-Module 01-Lesson 07_Stock Returns/03. M1L5 03 Log Returns V5-62fZN1QnGjc.en.vtt | 2.78KB Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.en.vtt | 2.78KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.en.vtt | 2.78KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. M4 L3b 20 IVol Volatility Enhanced Price Earnings Ratio V2-x-1nqTEPGcA.en.vtt | 2.78KB Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.en.vtt | 2.79KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.zh-CN.vtt | 2.79KB Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt | 2.79KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.pt-BR.vtt | 2.80KB Part 01-Module 04-Lesson 06_Alpha Factors/35. M4 L3a 152 The Fundamental Law Of Active Management Part 2 V7-CMc4ujA8Ahs.en.vtt | 2.80KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.ar.vtt | 2.80KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt | 2.80KB Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt | 2.81KB Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.pt-BR.vtt | 2.81KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt | 2.81KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.ar.vtt | 2.81KB Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.en.vtt | 2.82KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.en.vtt | 2.82KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt | 2.82KB Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.pt-BR.vtt | 2.82KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt | 2.82KB Part 01-Module 01-Lesson 05_Market Mechanics/06. M1L3 09 Open High Low Close V4-FgNY4YgVWFk.en.vtt | 2.83KB Part 01-Module 03-Lesson 02_ETFs/06. L2 08 Authorized Participant And The Create Process V4-u4thSf3Uxsc.en.vtt | 2.83KB Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt | 2.83KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt | 2.83KB Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.en.vtt | 2.83KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.en.vtt | 2.84KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.es-ES.vtt | 2.84KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt | 2.84KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt | 2.84KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. M4 L3b 17 IVol Idiosyncratic Volatility V2-B8hOR4G9CJk.en.vtt | 2.84KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.th.vtt | 2.84KB Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.zh-CN.vtt | 2.85KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. M2L6 01 Intro V3-CQ6QGAxbUF8.en.vtt | 2.85KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt | 2.86KB Part 01-Module 04-Lesson 06_Alpha Factors/04. M4 L3a 03 Definition Of Key Words V4-zySdIQTPTGo.en.vtt | 2.86KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt | 2.86KB Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt | 2.86KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. L3 02 Diversification V3-tyzqlXddXd8.en.vtt | 2.87KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.it.vtt | 2.87KB Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt | 2.88KB Part 01-Module 02-Lesson 03_Regression/02. M2L3 02 Distributions V2-ZlRGxq5I9BU.en.vtt | 2.88KB Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.zh-CN.vtt | 2.88KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt | 2.88KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt | 2.88KB Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt | 2.88KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt | 2.89KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.ar.vtt | 2.89KB Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.en.vtt | 2.89KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. M4 L2b 09 Writing It Down Pt 2 V2-TSH3hTAHsIg.en.vtt | 2.89KB Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.zh-CN.vtt | 2.90KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.en.vtt | 2.90KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. M4 L1B 17 Fundamental Ratios V2-Eo-faV9CsP8.en.vtt | 2.90KB Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt | 2.90KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.th.vtt | 2.91KB Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt | 2.92KB Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.en.vtt | 2.92KB Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt | 2.92KB Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.en.vtt | 2.92KB Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.en.vtt | 2.93KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.ar.vtt | 2.93KB Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.en.vtt | 2.93KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt | 2.93KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt | 2.93KB Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.en.vtt | 2.94KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt | 2.94KB Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt | 2.94KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.en.vtt | 2.94KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt | 2.95KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt | 2.95KB Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt | 2.95KB Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt | 2.95KB Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.pt-BR.vtt | 2.96KB Part 01-Module 04-Lesson 06_Alpha Factors/42. M4 L3a 182 Quantile Analysis Part 2 V3-NF18kx0sfBE.en.vtt | 2.96KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt | 2.96KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.pt-BR.vtt | 2.96KB Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.pt-BR.vtt | 2.96KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt | 2.97KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt | 2.97KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.en.vtt | 2.97KB Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt | 2.97KB Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt | 2.97KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.th.vtt | 2.98KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.pt-BR.vtt | 2.98KB Part 01-Module 04-Lesson 06_Alpha Factors/16. M4 L3a 09 Smoothing V2-mAfrjpZOf7Q.en.vtt | 2.98KB Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.ar.vtt | 2.98KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.en.vtt | 2.98KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt | 2.99KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.en.vtt | 2.99KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt | 2.99KB Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt | 2.99KB Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt | 3.00KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. M4 L2b 05 Translating Between Bases V4-lrE4VOJ2RCA.en.vtt | 3.00KB Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt | 3.00KB Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt | 3.00KB Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.ar.vtt | 3.00KB Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.zh-CN.vtt | 3.00KB Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt | 3.01KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt | 3.02KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt | 3.02KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.it.vtt | 3.02KB Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt | 3.02KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. M4 L2A 18 Fama French Value Factor V4-IcbsQ4QRGbs.en.vtt | 3.02KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. M4 L4 07 Leverage Constraint V5-zJ9gon4rFQc.en.vtt | 3.03KB Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt | 3.03KB Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt | 3.03KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt | 3.04KB Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt | 3.04KB Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.zh-CN.vtt | 3.04KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt | 3.04KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt | 3.04KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt | 3.05KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. M4 L1B 12 How An Alpha Factor Becomes A Risk Factor Part 2 V1-9waaTtRaU-Y.en.vtt | 3.06KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.pt-BR.vtt | 3.06KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt | 3.06KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.zh-CN.vtt | 3.06KB Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.zh-CN.vtt | 3.07KB Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt | 3.07KB Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.zh-CN.vtt | 3.07KB Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.en.vtt | 3.08KB Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04b Dividends V2-OVZw9tci55w.en.vtt | 3.08KB Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.en.vtt | 3.08KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt | 3.09KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt | 3.09KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. MV 05 Time Management V1-22PdQNlhCt8.en.vtt | 3.09KB Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt | 3.10KB Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.pt-BR.vtt | 3.11KB Part 01-Module 03-Lesson 04_Portfolio Optimization/02. L4 02 What Is Optimization V2-ISRlP1GeOjU.en.vtt | 3.11KB Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt | 3.11KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt | 3.11KB Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt | 3.12KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. M4 L4 04 Regularization V4-fq-CanyDHuw.en.vtt | 3.12KB Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt | 3.13KB Part 01-Module 01-Lesson 04_Stock Prices/01. M1L2 01 Stocks V6-23sv5ey0ySs.en.vtt | 3.13KB Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.pt-BR.vtt | 3.15KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.en.vtt | 3.15KB Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt | 3.16KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt | 3.16KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt | 3.17KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt | 3.17KB Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt | 3.18KB Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt | 3.18KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. M4 L2A 23 Categorical Factors V2-F76juAxHVIk.en.vtt | 3.18KB Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.en.vtt | 3.19KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.ar.vtt | 3.19KB Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt | 3.21KB Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.en.vtt | 3.21KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. MV 10 Transition From Project 02 Int V1-DYjOsL3VYfY.en.vtt | 3.22KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. M4 L2A 12 Time Series Risk Model Factor Variance V2-hjVBXeZmA0w.en.vtt | 3.22KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt | 3.22KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt | 3.22KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.pt-BR.vtt | 3.23KB Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt | 3.23KB Part 01-Module 02-Lesson 02_Outliers and Filtering/06. M2L2 05 Handling Outliers In Raw Data V3-3l6kQZqlVJA.en.vtt | 3.23KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.en.vtt | 3.23KB Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.en.vtt | 3.24KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt | 3.24KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.th.vtt | 3.25KB Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt | 3.25KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.en.vtt | 3.25KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. MV 11 Intro To Module 03 Difficulties In Learning V1-kqjFkUVZwEc.en.vtt | 3.26KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.ru.vtt | 3.26KB Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt | 3.26KB Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt | 3.27KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt | 3.27KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt | 3.27KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ja.vtt | 3.28KB Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt | 3.28KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt | 3.28KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt | 3.28KB Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt | 3.28KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.en.vtt | 3.28KB Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.pt-BR.vtt | 3.28KB Part 01-Module 01-Lesson 05_Market Mechanics/09. M1L3 12 Gaps In Market Data V3-jMT3VbUGiZI.en.vtt | 3.28KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt | 3.29KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt | 3.29KB Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt | 3.29KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt | 3.29KB Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt | 3.29KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.ru.vtt | 3.29KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. M4 L1B 09 Risk Factors V Alpha Factors Part 3 V1-UmdOVhcRCVU.en.vtt | 3.29KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. MV 7 Transition To Project 02 1 V1-nkAcx2X_lfs.en.vtt | 3.30KB Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt | 3.30KB Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.en.vtt | 3.31KB Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.en.vtt | 3.31KB Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt | 3.31KB Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt | 3.31KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. M4 L1B 23 Sentiment Analysis On News And Social Media V1-Jph7h2Yl0yg.en.vtt | 3.32KB Part 01-Module 04-Lesson 01_Factors/03. M4 L1A 03 Example Of A Factor V4-MJrwJDjWlAg.en.vtt | 3.32KB Part 01-Module 04-Lesson 06_Alpha Factors/41. M4 L3a 181 Quantile Analysis Part 1 V2-oT5GFbg0G8g.en.vtt | 3.33KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.en.vtt | 3.33KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. M2L6 02 Mean Reversion V5-zQ08lFcZa_A.en.vtt | 3.33KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt | 3.34KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt | 3.34KB Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt | 3.34KB Part 01-Module 02-Lesson 03_Regression/10. M2L3 09 Transforming Data V3-N8Fhq8wiQZU.en.vtt | 3.34KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.zh-CN.vtt | 3.34KB Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.zh-CN.vtt | 3.34KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. M4 L2b 16 PCA As A Factor Model Pt 2 V2-sDbmO0kHx9A.en.vtt | 3.34KB Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.en.vtt | 3.35KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.th.vtt | 3.35KB Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt | 3.35KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt | 3.35KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.en.vtt | 3.36KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt | 3.36KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt | 3.36KB Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt | 3.36KB Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.pt-BR.vtt | 3.37KB Part 01-Module 04-Lesson 06_Alpha Factors/31. M4 L3A 142 Ranked Information Coefficient Part 2 V5-WKGmog0Nzgo.en.vtt | 3.37KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt | 3.38KB Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.en.vtt | 3.38KB Part 01-Module 02-Lesson 04_Time Series Modeling/03. M2L4 03 Moving Average Models V5-1FkCP_dwxjI.en.vtt | 3.38KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. M4 L3b 11 Skewness And Momentum Defining Skew V2-6PgqIpmJBJ8.en.vtt | 3.38KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.th.vtt | 3.38KB Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt | 3.39KB Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt | 3.39KB Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.pt-BR.vtt | 3.39KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt | 3.39KB Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt | 3.39KB Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.en.vtt | 3.40KB Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt | 3.40KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. M4 L3b 08 Winners And Losers Approximating Curves With Polynomials V4-Nw6v2EeECt0.en.vtt | 3.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt | 3.40KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt | 3.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt | 3.41KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt | 3.41KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt | 3.41KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt | 3.41KB Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.pt-BR.vtt | 3.41KB Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.ar.vtt | 3.42KB Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.en.vtt | 3.42KB Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.en.vtt | 3.42KB Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt | 3.42KB Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt | 3.43KB Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt | 3.43KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt | 3.44KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt | 3.44KB Part 01-Module 04-Lesson 06_Alpha Factors/19. M4 L3a 10 Factor Returns V5-enyeTpyCS-o.en.vtt | 3.44KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.es-ES.vtt | 3.44KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. M4 L2b 15 PCA As A Factor Model Pt 1 V3-4E3C5E-MmkI.en.vtt | 3.45KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.it.vtt | 3.45KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt | 3.45KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt | 3.45KB Part 01-Module 04-Lesson 03_Risk Factor Models/07. M4 L2A 04 Factor Model Of Portfolio Return V3-HEoPljS1wD0.en.vtt | 3.45KB Part 01-Module 04-Lesson 01_Factors/08. M4 L1A 07 Rescale Part 1 V2-BcsxA0vy3jA.en.vtt | 3.46KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ar.vtt | 3.47KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.it.vtt | 3.47KB Part 01-Module 04-Lesson 06_Alpha Factors/30. M4 L3A 141 Ranked Information Coefficient Part 1 V4-_huNulOIuB0.en.vtt | 3.48KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt | 3.48KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. M4 L3b 12 Skewness And Momentum Momentum Enhances Or Weakened By Skew V2-S73J_h8DHsE.en.vtt | 3.48KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.ar.vtt | 3.49KB Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt | 3.49KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt | 3.50KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt | 3.50KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. MV 03 Transition To Project 01 V1-dcps5Bg4bZE.en.vtt | 3.50KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt | 3.51KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt | 3.51KB Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.en.vtt | 3.51KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.ar.vtt | 3.51KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.ar.vtt | 3.51KB Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.en.vtt | 3.52KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.th.vtt | 3.52KB Part 01-Module 01-Lesson 03_Get Help with Your Account/index.html | 3.52KB Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt | 3.53KB Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/index.html | 3.53KB Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.en.vtt | 3.54KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. M4 L2A 16 Fama French Size Factor V2-94a2ugitC_E.en.vtt | 3.54KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. M4 L4 03 Setting Up The Problem Risk V4-2vcULOlXTzc.en.vtt | 3.55KB Part 01-Module 04-Lesson 03_Risk Factor Models/05. M4 L2A 03 Factor Model Of Asset Return V2-7UnllxDmLj8.en.vtt | 3.55KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. M4 L4 14 Transaction Costs V3-yxwqTvbJhhc.en.vtt | 3.56KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.en.vtt | 3.56KB Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.ar.vtt | 3.58KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. M4 L2b 06 The Core Idea V3-0KwLkaKHAvg.en.vtt | 3.58KB Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt | 3.59KB Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.en.vtt | 3.60KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt | 3.60KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt | 3.60KB Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt | 3.60KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.en.vtt | 3.60KB Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt | 3.60KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.en.vtt | 3.60KB Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.zh-CN.vtt | 3.61KB Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.pt-BR.vtt | 3.61KB Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.pt-BR.vtt | 3.62KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Services-cuKecPpZ7PM.en.vtt | 3.63KB Part 02-Module 01-Lesson 01_Welcome To Term II/index.html | 3.63KB Part 01-Module 01-Lesson 04_Stock Prices/index.html | 3.64KB Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt | 3.64KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. M4 L1B 20 Pre And Post Event V1-Olz9QZQaBxs.en.vtt | 3.64KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. M4 L1B 03 Factor Returns As Latent Variables V3-LpHvJq6XTOQ.en.vtt | 3.66KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt | 3.66KB Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.ar.vtt | 3.67KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt | 3.67KB Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt | 3.67KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt | 3.67KB Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.ar.vtt | 3.67KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt | 3.67KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/index.html | 3.67KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt | 3.67KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt | 3.67KB Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.zh-CN.vtt | 3.68KB Part 02-Module 04-Lesson 01_Coming soon!/index.html | 3.68KB Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt | 3.69KB Part 01-Module 04-Lesson 01_Factors/05. M4 L1A 04 Standardizing A Factor V5-sLZY2SQ4uME.en.vtt | 3.70KB Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt | 3.70KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. M4 L4 19 What Is Optimization Doing To OUr Alphas V3-6Yqb91Xahvg.en.vtt | 3.70KB Part 03-Module 01-Lesson 01_Why Python Programming/index.html | 3.71KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. M4 L2A 17 Fama French Size Factor V3-FXZuHsn0bx4.en.vtt | 3.72KB Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt | 3.73KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.pt-BR.vtt | 3.75KB Part 01-Module 04-Lesson 06_Alpha Factors/51. M4 L3a 25 Interlude Pt 1 V2-SMQwc5kwSr0.en.vtt | 3.76KB assets/css/styles.css | 3.76KB Part 01-Module 01-Lesson 08_Momentum Trading/04. M1L6 04 Long And Short Positions V3-TCOFgM-hxkQ.en.vtt | 3.76KB Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt | 3.76KB assets/css/fonts/KaTeX_Size3-Regular.woff2 | 3.77KB Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.pt-BR.vtt | 3.77KB Part 02-Module 03-Lesson 01_Coming Soon!/index.html | 3.77KB Part 01-Module 02-Lesson 04_Time Series Modeling/08. M2L4 09 Recurrent Neural Networks V5-5cYAAHyRHDo.en.vtt | 3.77KB Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt | 3.78KB Part 01-Module 02-Lesson 01_Quant Workflow/index.html | 3.78KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. M1L1 05 Program Overview V1-Ci0j_UwLlQQ.en.vtt | 3.79KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt | 3.79KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. M4 L1B 02 What Is A Factor Model V4-K5QKPwU38Do.en.vtt | 3.79KB Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt | 3.80KB Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.pt-BR.vtt | 3.81KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.en.vtt | 3.82KB Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.en.vtt | 3.82KB Part 07-Module 01-Lesson 01_Linear Regression/img/m.gif | 3.82KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Services-cuKecPpZ7PM.pt-BR.vtt | 3.83KB Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.pt-BR.vtt | 3.84KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt | 3.84KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt | 3.85KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt | 3.85KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt | 3.85KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt | 3.85KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ar.vtt | 3.86KB Part 01-Module 04-Lesson 06_Alpha Factors/13. M4 L3a 08 Z Score V3-6_cKCoLa92o.en.vtt | 3.86KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.en.vtt | 3.87KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. M4 L2A 26 Fundamental Factors V2-fndhL2Tolac.en.vtt | 3.87KB Part 01-Module 01-Lesson 07_Stock Returns/index.html | 3.88KB Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt | 3.88KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. M4 L3b 07 Winners And Losers Accelerated And Decelerated Gains And Losses V2-cdSdKl4uxVM.en.vtt | 3.88KB Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt | 3.89KB Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt | 3.90KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt | 3.90KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/index.html | 3.91KB Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.en.vtt | 3.91KB Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt | 3.91KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. M2L6 09 Cointegration V6-N4ZI5SyFMOc.en.vtt | 3.91KB Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.zh-CN.vtt | 3.92KB Part 01-Module 04-Lesson 03_Risk Factor Models/12. M4 L2A 08 Variance Of 2 Stocks Part 1 V3-PlPusmuR20k.en.vtt | 3.92KB Part 01-Module 03-Lesson 02_ETFs/12. MV 11 Guided Meditation V1-njp1mnEEv9s.en.vtt | 3.93KB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/index.html | 3.93KB Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt | 3.93KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. M4 L2A 20 Fama French Risk Model V3-tepvGkpNKrI.en.vtt | 3.93KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt | 3.93KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt | 3.93KB Part 04-Module 01-Lesson 01_Introduction/index.html | 3.94KB Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.en.vtt | 3.95KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/index.html | 3.95KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/index.html | 3.96KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.ar.vtt | 3.96KB Part 01-Module 04-Lesson 06_Alpha Factors/09. M4 L3a 06 Ranking Part 1 V4-4j2hIB7WHY4.en.vtt | 3.96KB Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.ar.vtt | 3.96KB Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.zh-CN.vtt | 3.98KB Part 01-Module 02-Lesson 01_Quant Workflow/04. M2L1 03 Flavors Of Trading Strategies V4-uCCx8I9u_Nk.en.vtt | 3.98KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt | 3.98KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt | 3.98KB Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt | 3.98KB Part 01-Module 04-Lesson 06_Alpha Factors/01. M4 L3a 01 Intro Efficient Market Hypothesis And Arbitrage Opportunities V3--YpXAt7zuh8.en.vtt | 3.99KB Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.ar.vtt | 3.99KB Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.en.vtt | 4.00KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt | 4.01KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt | 4.01KB Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 01 Stock Pt II V1-SGb54HLbk1g.en.vtt | 4.02KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/index.html | 4.03KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. M4 L4 12 Infeasible Problems V4-ljg25Rj511Q.en.vtt | 4.04KB Part 02-Module 01-Lesson 04_Feature Extraction/index.html | 4.04KB Part 01-Module 02-Lesson 05_Volatility/02. M2L5 02 Historical Volatility V3-BOPhsYLHkUU.en.vtt | 4.04KB Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt | 4.04KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/index.html | 4.05KB Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.en.vtt | 4.05KB Part 01-Module 04-Lesson 01_Factors/01. M4 L3A 01 Intro To The Factors V2-OqhRUxHf6wo.en.vtt | 4.05KB Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt | 4.05KB Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt | 4.06KB Part 01-Module 04-Lesson 03_Risk Factor Models/01. M4 L2A 01 Intro V1-DgsD3yL9Yy0.en.vtt | 4.07KB Part 01-Module 02-Lesson 04_Time Series Modeling/06. M2L4 07 Kalman Filter V4-CLJhgfMI4Ho.en.vtt | 4.08KB Part 06-Module 01-Lesson 08_Python Probability Practice/index.html | 4.08KB Part 01-Module 01-Lesson 08_Momentum Trading/06. M1L6 06 Trading Strategy V2-rrCHC20FkIc.en.vtt | 4.09KB Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt | 4.10KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.ar.vtt | 4.11KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt | 4.11KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt | 4.11KB Part 01-Module 02-Lesson 04_Time Series Modeling/index.html | 4.11KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. Jonathan Larkin - What Is A Quant-G22oM0qv0Hs.en.vtt | 4.11KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt | 4.11KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt | 4.11KB Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.ar.vtt | 4.12KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. M1L1 Introducing The Instructors 1 V4-l5gG7r-BWYc.en.vtt | 4.12KB Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.ar.vtt | 4.13KB Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt | 4.13KB Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.en.vtt | 4.14KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. M4 L3b 03 Overnight Returns Possible Alpha Factors V2-QBCDr9q2rLo.en.vtt | 4.14KB Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.en.vtt | 4.14KB Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.ar.vtt | 4.14KB Part 04-Module 01-Lesson 03_Linear Combination/index.html | 4.14KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt | 4.15KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt | 4.15KB Part 01-Module 02-Lesson 05_Volatility/08. M2L5 07 Exponentially Weighted Moving Average V4-VBPitTHzYRI.en.vtt | 4.15KB Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt | 4.15KB Part 01-Module 04-Lesson 01_Factors/09. M4 L1A 08 Rescale Part 2 V3-8Ix10U6MEug.en.vtt | 4.16KB Part 01-Module 01-Lesson 05_Market Mechanics/index.html | 4.17KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt | 4.17KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt | 4.17KB Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt | 4.18KB Part 01-Module 04-Lesson 06_Alpha Factors/24. M4 L3a 12 Return Denominator Leverage And Factor Returns V3-QxHrP5LoXAI.en.vtt | 4.18KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. M4 L3b 09 Winners And Losers Creating A Joint Factor V3-xmW05ii8Vxs.en.vtt | 4.18KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt | 4.18KB Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.pt-BR.vtt | 4.19KB Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.22-pm.png | 4.20KB Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.en.vtt | 4.20KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt | 4.20KB Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.en.vtt | 4.21KB Part 02-Module 01-Lesson 03_Text Processing/index.html | 4.21KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/index.html | 4.22KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt | 4.22KB Part 01-Module 02-Lesson 05_Volatility/01. M2L5 01 What Is Volatility V3-brGVwpDSuG4.en.vtt | 4.23KB Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.pt-BR.vtt | 4.24KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.pt-BR.vtt | 4.24KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt | 4.24KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt | 4.24KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt | 4.24KB Part 10-Module 01-Lesson 01_Intro to NLP/index.html | 4.24KB Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt | 4.25KB Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt | 4.26KB Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt | 4.26KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt | 4.27KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt | 4.27KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt | 4.27KB Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.55-pm.png | 4.28KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.zh-CN.vtt | 4.29KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt | 4.30KB Part 01-Module 02-Lesson 02_Outliers and Filtering/index.html | 4.30KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. M4 L1B 21 Analyst Ratings V1-cHkJo8qBKes.en.vtt | 4.31KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/index.html | 4.31KB Part 01-Module 02-Lesson 04_Time Series Modeling/02. M2L4 02 Autoregressive Models V5-9jE7S4b-oIU.en.vtt | 4.31KB Part 01-Module 03-Lesson 02_ETFs/index.html | 4.32KB Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.zh-CN.vtt | 4.32KB Part 01-Module 02-Lesson 05_Volatility/10. M2L5 09 Forecasting Volatility V3-82v4v_PKDAE.en.vtt | 4.32KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt | 4.34KB Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt | 4.34KB Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.ar.vtt | 4.36KB Part 01-Module 01-Lesson 07_Stock Returns/05. M1L5 06 Distribution Of Stock Prices Part 2 V1-cGoXGiO1DYk.en.vtt | 4.36KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt | 4.37KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt | 4.37KB Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt | 4.37KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/index.html | 4.37KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. M4 L2b 04 Bases As Languages V3-yEL0-AE3mjo.en.vtt | 4.37KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/index.html | 4.37KB Part 02-Module 04-Lesson 01_Coming soon!/Project Rubric - Project 8 Backtesting.html | 4.39KB Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.ar.vtt | 4.39KB Part 01-Module 04-Lesson 06_Alpha Factors/46. M4 L3a 20 Transfer Coefficient V3-4rZ0MWQzlIs.en.vtt | 4.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt | 4.41KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt | 4.41KB Part 06-Module 01-Lesson 03_Admissions Case Study/index.html | 4.41KB Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt | 4.42KB Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.pt-BR.vtt | 4.42KB Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.pt-BR.vtt | 4.42KB Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt | 4.42KB Part 02-Module 04-Lesson 01_Coming soon!/Project Description - Project 8 Backtesting.html | 4.42KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.pt-BR.vtt | 4.43KB Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt | 4.43KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. M4 L3b 04 Overnight Returns Data Universe Methods V2-Y_lBDa1hRco.en.vtt | 4.44KB Part 01-Module 04-Lesson 06_Alpha Factors/39. M4 L3a 172 Factor Rank Autocorrelation Turnover V2-QBvbMiVW100.en.vtt | 4.45KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt | 4.45KB Part 01-Module 04-Lesson 01_Factors/index.html | 4.45KB Part 01-Module 02-Lesson 03_Regression/11. M2L3 10 Linear Regression V4-GRY4eakMBJ8.en.vtt | 4.46KB Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 2 V1-v3w4JZKQixc.en.vtt | 4.46KB Part 01-Module 01-Lesson 06_Data Processing/index.html | 4.46KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/21. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.en.vtt | 4.47KB Part 04-Module 01-Lesson 02_Vectors/index.html | 4.48KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ar.vtt | 4.48KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt | 4.49KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt | 4.49KB Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.ar.vtt | 4.50KB Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt | 4.50KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.en.vtt | 4.51KB Part 06-Module 01-Lesson 05_Binomial Distribution/index.html | 4.51KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. M4 L2A 24 Categorical Variable Estimation V4-50hvTluqz3U.en.vtt | 4.51KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.zh-CN.vtt | 4.51KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/06. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.en.vtt | 4.52KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/07. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.en.vtt | 4.52KB Part 02-Module 03-Lesson 01_Coming Soon!/Project Rubric - Project 7 Combine Signals for Enhanced Alpha.html | 4.53KB Part 01-Module 02-Lesson 05_Volatility/index.html | 4.53KB Part 02-Module 01-Lesson 01_Welcome To Term II/01. Welcome!.html | 4.54KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. M4 L3b 18 IVol Value Fundamental Or Discretionary Investing V2-sKAE5Z8e7IM.en.vtt | 4.54KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.en.vtt | 4.54KB Part 01-Module 03-Lesson 04_Portfolio Optimization/index.html | 4.54KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt | 4.54KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt | 4.54KB Part 01-Module 02-Lesson 02_Outliers and Filtering/08. M2L2 07 Handling Outliers In Signal Returns V4-ILdnNi4CgZM.en.vtt | 4.55KB Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.pt-BR.vtt | 4.55KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt | 4.55KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. M4 L1B 15 Volume Factors V1-1dTAV3Irxv4.en.vtt | 4.55KB Part 06-Module 01-Lesson 06_Conditional Probability/index.html | 4.56KB Part 02-Module 03-Lesson 01_Coming Soon!/Project Description - Project 7 Combine Signals for Enhanced Alpha.html | 4.56KB Part 02-Module 01-Lesson 01_Welcome To Term II/02. Overview of Term II.html | 4.56KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/index.html | 4.56KB Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.ar.vtt | 4.57KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.pt-BR.vtt | 4.58KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/index.html | 4.58KB Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt | 4.58KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt | 4.59KB Part 02-Module 01-Lesson 01_Welcome To Term II/03. Interview with Justin Sheetz.html | 4.59KB Part 07-Module 01-Lesson 02_Naive Bayes/index.html | 4.59KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.th.vtt | 4.60KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. 6 Cleaning And Padding V1-UgPo1_cq-0g.en.vtt | 4.60KB Part 01-Module 02-Lesson 01_Quant Workflow/02. M2L1 01 Starting From A Hypothesis V3-yjlt4yerB9I.en.vtt | 4.60KB Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.en.vtt | 4.61KB Part 02-Module 02-Lesson 04_Training Neural Networks/index.html | 4.61KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt | 4.61KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt | 4.61KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. M4 L1B 07 Risk Factors V Alpha Factors V2-9KUpH1MDC1k.en.vtt | 4.63KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt | 4.63KB Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt | 4.63KB Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt | 4.64KB Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt | 4.65KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt | 4.65KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/index.html | 4.66KB Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt | 4.66KB Part 01-Module 01-Lesson 08_Momentum Trading/index.html | 4.66KB assets/css/fonts/KaTeX_Size3-Regular.woff | 4.66KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt | 4.67KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt | 4.67KB Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt | 4.67KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.zh-CN.vtt | 4.67KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt | 4.68KB Part 01-Module 04-Lesson 06_Alpha Factors/50. M4 L3a 23 Summary V3-FZYqdaqoiZk.en.vtt | 4.69KB Part 05-Module 01-Lesson 03_Pandas/index.html | 4.70KB Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt | 4.70KB Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt | 4.71KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt | 4.71KB Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.pt-BR.vtt | 4.71KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt | 4.72KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. L3 04 Portfolio Variance V2-LlxRypakop4.en.vtt | 4.72KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt | 4.72KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/index.html | 4.72KB Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.en.vtt | 4.72KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt | 4.73KB Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/01. Coming Soon!.html | 4.73KB Part 06-Module 01-Lesson 04_Probability/index.html | 4.73KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. M4 L1B 05 Covariance Matrix Using Factor Model V3-_qfTLXoifsM.en.vtt | 4.73KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt | 4.74KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt | 4.74KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/Project Description - Trading with Momentum.html | 4.74KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/index.html | 4.75KB Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.zh-CN.vtt | 4.76KB Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.zh-CN.vtt | 4.77KB Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt | 4.77KB Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.zh-CN.vtt | 4.77KB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/Project Description - NLP on Financial Statements.html | 4.77KB Part 01-Module 04-Lesson 06_Alpha Factors/34. M4 L3a 151 The Fundamental Law Of Active Management Part 1 V4-iCW_vqvrTlw.en.vtt | 4.77KB Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.en.vtt | 4.78KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.en.vtt | 4.78KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/index.html | 4.79KB Part 05-Module 01-Lesson 02_NumPy/index.html | 4.80KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/Project Description - Multi-factor Model.html | 4.80KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. M2L6 13 Trade Pairs Of Stocks V6-i1yVMrgjtB0.en.vtt | 4.80KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt | 4.81KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt | 4.81KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/Project Description - Breakout Strategy.html | 4.81KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/index.html | 4.81KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. M4 L1B 06 Factor Models In Quant Finance V2-VeM2SudgZqc.en.vtt | 4.82KB Part 07-Module 01-Lesson 03_Clustering/index.html | 4.82KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt | 4.83KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt | 4.83KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. M4 L3b 10 Skewness And Momentum Attentional Bias V3-3ZkFRBUmSQ0.en.vtt | 4.83KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt | 4.84KB Part 06-Module 01-Lesson 13_Case Study AB tests/index.html | 4.85KB Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.ar.vtt | 4.85KB Part 01-Module 02-Lesson 01_Quant Workflow/03. Quant Workflow.html | 4.85KB Part 01-Module 02-Lesson 01_Quant Workflow/01. Intro Module 2.html | 4.86KB Part 01-Module 02-Lesson 03_Regression/index.html | 4.86KB Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04 Corporate Actions V5-S60WArbQK7k.en.vtt | 4.86KB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/01. Introduction to Project 5.html | 4.87KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt | 4.87KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt | 4.87KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.ja.vtt | 4.87KB Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt | 4.88KB Part 01-Module 04-Lesson 01_Factors/06. M4 L1A 05 Demean Part 1 V3-R3N8bd8U6TM.en.vtt | 4.89KB Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt | 4.89KB Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.zh-CN.vtt | 4.90KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt | 4.90KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/Project Description - Smart Beta and Portfolio Optimization.html | 4.90KB Part 01-Module 02-Lesson 01_Quant Workflow/04. Flavors of Trading.html | 4.90KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. M4 L4 17 Path Dependency 1 V3-ok9rKYRtZLE.en.vtt | 4.91KB Part 01-Module 02-Lesson 01_Quant Workflow/02. Starting from a Hypothesis.html | 4.91KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.pt-BR.vtt | 4.92KB Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt | 4.92KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.en.vtt | 4.92KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. M4 L4 10 Estimation Error V4-WdrMIRhScN0.en.vtt | 4.93KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/index.html | 4.94KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Jonathan Larkin Careers-QhHNPxM_Ku4.en.vtt | 4.95KB Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.zh-CN.vtt | 4.96KB Part 07-Module 01-Lesson 04_Decision Trees/index.html | 4.97KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt | 4.98KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt | 4.98KB Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 02 Stock Prices V7-l_PilXVuh8I.en.vtt | 4.99KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. Intro to Project 1.html | 5.00KB Part 03-Module 01-Lesson 04_Functions/index.html | 5.00KB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/02. Project Description.html | 5.00KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt | 5.00KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt | 5.00KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/index.html | 5.00KB Part 01-Module 01-Lesson 03_Get Help with Your Account/02. Support.html | 5.01KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. Intro.html | 5.01KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt | 5.02KB Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.pt-BR.vtt | 5.02KB Part 01-Module 04-Lesson 06_Alpha Factors/49. M4 L3a 22 Conditional Factors V2-2J1aUwGq6tc.en.vtt | 5.02KB Part 01-Module 03-Lesson 04_Portfolio Optimization/03. L4 03 Optimization With Constraints V3-91WzhG6dti8.en.vtt | 5.03KB Part 01-Module 03-Lesson 04_Portfolio Optimization/10. L4 11 Rebalancing A Portfolio V2-S5SPhBpG3b0.en.vtt | 5.03KB Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt | 5.04KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. Outro What's next.html | 5.04KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.en.vtt | 5.04KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt | 5.05KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt | 5.05KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. 9 DefiningModel V1-SpvIZl1YQRI.en.vtt | 5.05KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt | 5.06KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt | 5.06KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt | 5.06KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. Intro Project 2.html | 5.06KB assets/css/fonts/KaTeX_Size4-Regular.woff2 | 5.06KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt | 5.07KB Part 01-Module 04-Lesson 06_Alpha Factors/05. M4 L3a 04 Researching Alphas From Academic Papers V4-te0UTxemLBE.en.vtt | 5.07KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. Wrapping Up Module 2.html | 5.09KB Part 01-Module 04-Lesson 01_Factors/02. M4 L1A 02 Intro V2-W7_llXQ2GhA.en.vtt | 5.09KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. Intro Project 3.html | 5.09KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. M4 L2b 14 Explained Variance V3-OdHeReNUqoQ.en.vtt | 5.10KB Part 02-Module 04-Lesson 01_Coming soon!/01. Coming soon!.html | 5.11KB Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt | 5.11KB Part 01-Module 01-Lesson 05_Market Mechanics/08. M1L3 10 Volume V3-DFp7kp0xRCo.en.vtt | 5.12KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.en.vtt | 5.12KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/02. Project Description.html | 5.12KB Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt | 5.13KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.th.vtt | 5.13KB Part 01-Module 04-Lesson 03_Risk Factor Models/index.html | 5.15KB Part 03-Module 01-Lesson 01_Why Python Programming/01. Instructor.html | 5.15KB Part 02-Module 03-Lesson 01_Coming Soon!/01. Coming Soon!.html | 5.17KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.en.vtt | 5.17KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt | 5.19KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt | 5.19KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.pt-BR.vtt | 5.20KB Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.en.vtt | 5.20KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.pt-BR.vtt | 5.21KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.en.vtt | 5.21KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.pt-BR.vtt | 5.21KB Part 01-Module 01-Lesson 04_Stock Prices/01. Stocks.html | 5.23KB Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt | 5.23KB Part 01-Module 02-Lesson 04_Time Series Modeling/09. Summary.html | 5.23KB Part 07-Module 01-Lesson 01_Linear Regression/index.html | 5.24KB Part 01-Module 02-Lesson 05_Volatility/11. M2L5 11 Markets Volatility V3-jEHJkZUX9s4.en.vtt | 5.25KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. M4 L1B 25 Other Alternative Data V1-hMw3AuPVSSs.en.vtt | 5.26KB Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF.html | 5.27KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.en.vtt | 5.28KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt | 5.29KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt | 5.29KB Part 02-Module 01-Lesson 04_Feature Extraction/10. Summary.html | 5.29KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt | 5.29KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt | 5.29KB Part 01-Module 02-Lesson 04_Time Series Modeling/01. Time Series Modeling.html | 5.30KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.zh-CN.vtt | 5.30KB Part 01-Module 02-Lesson 04_Time Series Modeling/02. Autoregressive Models.html | 5.31KB Part 01-Module 02-Lesson 04_Time Series Modeling/03. Moving Average Models.html | 5.31KB Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt | 5.32KB Part 01-Module 01-Lesson 04_Stock Prices/04. Quiz Stock Data.html | 5.32KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt | 5.33KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/02. Project Description.html | 5.33KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt | 5.33KB Part 01-Module 01-Lesson 05_Market Mechanics/01. Intro.html | 5.34KB Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction.html | 5.34KB Part 01-Module 01-Lesson 05_Market Mechanics/11. Summary.html | 5.34KB Part 01-Module 01-Lesson 05_Market Mechanics/08. Volume.html | 5.34KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/02. Reviews.html | 5.35KB Part 01-Module 01-Lesson 05_Market Mechanics/05. Tick Data.html | 5.36KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. M4 L1B 24 NLP Used To Enhance Fundamental Analysis V1-9zMWuZ9j7rI.en.vtt | 5.36KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt | 5.37KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt | 5.37KB Part 02-Module 01-Lesson 04_Feature Extraction/09. t-SNE.html | 5.37KB Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe.html | 5.37KB Part 04-Module 01-Lesson 01_Introduction/03. Essence of Linear Algebra.html | 5.38KB Part 04-Module 01-Lesson 01_Introduction/01. Our Goal .html | 5.39KB Part 01-Module 01-Lesson 05_Market Mechanics/02. Farmers' Market.html | 5.39KB Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec.html | 5.39KB Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.en.vtt | 5.39KB Part 01-Module 01-Lesson 03_Get Help with Your Account/01. FAQ.html | 5.40KB Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.en.vtt | 5.40KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.th.vtt | 5.40KB Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt | 5.41KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/02. Project Description.html | 5.42KB Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag of Words.html | 5.42KB Part 01-Module 01-Lesson 05_Market Mechanics/06. OHLC Open, High, Low, Close.html | 5.42KB Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.pt-BR.vtt | 5.43KB assets/css/fonts/KaTeX_Size2-Regular.woff2 | 5.43KB Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings.html | 5.44KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/02. Project Description.html | 5.44KB Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.zh-CN.vtt | 5.44KB Part 01-Module 02-Lesson 02_Outliers and Filtering/01. Intro.html | 5.45KB Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding.html | 5.45KB Part 01-Module 02-Lesson 02_Outliers and Filtering/10. Summary.html | 5.45KB Part 02-Module 01-Lesson 05_Financial Statements/index.html | 5.46KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/01. What It Takes.html | 5.49KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. NLP Overview.html | 5.49KB Part 01-Module 01-Lesson 07_Stock Returns/03. Log Returns.html | 5.50KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI.html | 5.50KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/index.html | 5.50KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt | 5.51KB Part 01-Module 02-Lesson 02_Outliers and Filtering/02. Sources of Outliers.html | 5.52KB Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt | 5.52KB Part 01-Module 03-Lesson 02_ETFs/01. Intro.html | 5.52KB Part 06-Module 01-Lesson 11_Confidence Intervals/index.html | 5.53KB Part 01-Module 03-Lesson 02_ETFs/11. Summary.html | 5.53KB Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings for Deep Learning.html | 5.53KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.en.vtt | 5.54KB Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt | 5.56KB Part 01-Module 02-Lesson 02_Outliers and Filtering/07. M2L2 06 Spotting Outliers In Signal Returns V4-BSLGZz0RzTg.en.vtt | 5.56KB Part 01-Module 02-Lesson 02_Outliers and Filtering/05. Spotting Outliers in Raw Data.html | 5.56KB Part 01-Module 02-Lesson 02_Outliers and Filtering/06. Handling Outliers in Raw Data.html | 5.56KB Part 10-Module 01-Lesson 01_Intro to NLP/01. Introducing Arpan.html | 5.57KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/05. Tell Us About Yourself.html | 5.57KB Part 10-Module 01-Lesson 01_Intro to NLP/02. NLP Overview.html | 5.57KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling.html | 5.57KB Part 03-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html | 5.58KB Part 02-Module 01-Lesson 03_Text Processing/11. Summary.html | 5.58KB Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.en.vtt | 5.58KB Part 01-Module 02-Lesson 02_Outliers and Filtering/09. Generating Robust Trading Signals.html | 5.58KB Part 01-Module 03-Lesson 02_ETFs/12. Interlude Meditation.html | 5.59KB Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.zh-CN.vtt | 5.59KB Part 01-Module 02-Lesson 02_Outliers and Filtering/08. Handling Outliers in Signal Returns.html | 5.59KB Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.pt-BR.vtt | 5.59KB Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt | 5.60KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt | 5.61KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt | 5.61KB Part 06-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html | 5.61KB Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.en.vtt | 5.61KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.th.vtt | 5.61KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. L3 08 The Efficient Frontier V3-tEEyhU23bI4.en.vtt | 5.62KB Part 01-Module 01-Lesson 07_Stock Returns/02. Quiz Calculate Returns.html | 5.62KB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/03. Project 5 Workspace.html | 5.62KB Part 06-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html | 5.62KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/03. Trading with Momentum Workspace.html | 5.62KB Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.zh-CN.vtt | 5.63KB Part 01-Module 03-Lesson 02_ETFs/02. Shortcomings of Mutual Funds.html | 5.63KB Part 01-Module 01-Lesson 07_Stock Returns/01. Returns.html | 5.63KB Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing.html | 5.64KB Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling.html | 5.65KB Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal.html | 5.65KB Part 01-Module 04-Lesson 06_Alpha Factors/52. M4 L3a 26 Interlude Pt 2 V2-1a60RPqhO8k.en.vtt | 5.65KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/03. Project 4 Workspace.html | 5.66KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service.html | 5.66KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt | 5.67KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt | 5.67KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. NLP and Pipelines.html | 5.68KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. How NLP Pipelines Work.html | 5.68KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/03. Breakout Strategy Workspace.html | 5.69KB assets/css/fonts/KaTeX_Size1-Regular.woff2 | 5.69KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/index.html | 5.69KB Part 01-Module 02-Lesson 04_Time Series Modeling/07. Particle Filter.html | 5.69KB Part 01-Module 04-Lesson 06_Alpha Factors/53. M4 L3a 27 Interlude Pt 3 V2-v6cLkoJhujU.en.vtt | 5.69KB Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition.html | 5.70KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt | 5.70KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt | 5.70KB Part 01-Module 02-Lesson 02_Outliers and Filtering/04. Outliers, Signals and Strategies.html | 5.71KB Part 02-Module 01-Lesson 03_Text Processing/10. Stemming and Lemmatization.html | 5.71KB Part 01-Module 04-Lesson 01_Factors/02. Intro to the Lesson.html | 5.71KB Part 01-Module 02-Lesson 04_Time Series Modeling/08. Recurrent Neural Networks.html | 5.73KB Part 01-Module 03-Lesson 04_Portfolio Optimization/11. L4 12 Rebalancing Strategies V2-8u5gBx-fYr8.en.vtt | 5.73KB Part 01-Module 02-Lesson 05_Volatility/03. Annualized Volatility.html | 5.74KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/index.html | 5.75KB Part 01-Module 01-Lesson 06_Data Processing/08. Survivor Bias.html | 5.75KB Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combination. Part 1.html | 5.75KB Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combination. Part 2.html | 5.75KB Part 01-Module 03-Lesson 04_Portfolio Optimization/01. Intro.html | 5.75KB Part 01-Module 02-Lesson 02_Outliers and Filtering/07. Spotting Outliers in Signal Returns.html | 5.75KB Part 01-Module 04-Lesson 01_Factors/03. Example of a factor.html | 5.75KB Part 01-Module 03-Lesson 04_Portfolio Optimization/13. Summary.html | 5.75KB Part 01-Module 01-Lesson 06_Data Processing/05. Missing Values.html | 5.75KB Part 01-Module 01-Lesson 06_Data Processing/13. Alternate Data.html | 5.75KB Part 01-Module 04-Lesson 01_Factors/01. Intro to the Module.html | 5.76KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/03. Smart Beta and Portfolio Optimization Workspace.html | 5.76KB Part 10-Module 01-Lesson 01_Intro to NLP/08. NLP and Pipelines.html | 5.76KB Part 10-Module 01-Lesson 01_Intro to NLP/09. How NLP Pipelines Work.html | 5.76KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.en.vtt | 5.76KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/12. Finishing up.html | 5.76KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.en.vtt | 5.76KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/index.html | 5.77KB Part 01-Module 02-Lesson 05_Volatility/14. Summary.html | 5.79KB Part 01-Module 01-Lesson 06_Data Processing/11. Exchange Traded Funds.html | 5.79KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. Intro.html | 5.79KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/03. Installing Jupyter Notebook.html | 5.80KB Part 01-Module 01-Lesson 05_Market Mechanics/10. Markets in Different Timezones.html | 5.80KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. Summary.html | 5.80KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.pt-BR.vtt | 5.81KB Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.pt-BR.vtt | 5.81KB Part 01-Module 01-Lesson 07_Stock Returns/06. Why Log Returns.html | 5.82KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/08. PyTorch V2 Part 2 V1-CSQOdOb2mlg.en.vtt | 5.83KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. M2L6 04 Pairs Trading V3-7lEm_tFXcBk.en.vtt | 5.83KB Part 03-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html | 5.83KB Part 01-Module 02-Lesson 05_Volatility/06. Rolling Windows.html | 5.83KB Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 3 V1-vSxnkduTWWY.en.vtt | 5.83KB Part 01-Module 01-Lesson 06_Data Processing/14. Interlude Your Goals.html | 5.84KB Part 01-Module 03-Lesson 04_Portfolio Optimization/10. Rebalancing a Portfolio.html | 5.84KB Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.en.vtt | 5.85KB Part 01-Module 02-Lesson 05_Volatility/01. What is Volatility.html | 5.85KB Part 01-Module 02-Lesson 05_Volatility/13. Breakout Strategies.html | 5.85KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. Defining the Model.html | 5.85KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. Clustering Stocks.html | 5.85KB Part 01-Module 02-Lesson 05_Volatility/02. Historical Volatility.html | 5.86KB Part 01-Module 02-Lesson 05_Volatility/11. Markets Volatility.html | 5.86KB Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.zh-CN.vtt | 5.86KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing.html | 5.86KB Part 01-Module 02-Lesson 05_Volatility/10. Forecasting Volatility.html | 5.87KB Part 01-Module 03-Lesson 04_Portfolio Optimization/03. Optimization with Constraints.html | 5.87KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. Data Pre-Processing.html | 5.87KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. Encoding Words, Solution.html | 5.88KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. Finding Pairs to Trade.html | 5.88KB Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.ar.vtt | 5.88KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. Padded Features, Solution.html | 5.88KB Part 01-Module 01-Lesson 05_Market Mechanics/09. Gaps in Market Data.html | 5.88KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. Sentiment RNN, Introduction.html | 5.88KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. Cleaning Padding Data.html | 5.89KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt | 5.89KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt | 5.89KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. Getting Rid of Zero-Length.html | 5.89KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/08. Keyboard shortcuts.html | 5.92KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction.html | 5.92KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. What is a Quant.html | 5.92KB Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization.html | 5.92KB Part 01-Module 02-Lesson 04_Time Series Modeling/05. Exercise ARMA and ARIMA.html | 5.92KB Part 01-Module 02-Lesson 05_Volatility/12. Using Volatility for Equity Trading.html | 5.93KB Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing.html | 5.94KB Part 01-Module 02-Lesson 05_Volatility/08. Exponentially Weighted Moving Average.html | 5.94KB Part 01-Module 01-Lesson 08_Momentum Trading/13. Finding Alpha.html | 5.95KB Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.pt-BR.vtt | 5.95KB Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.en.vtt | 5.96KB Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html | 5.98KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context Is Everything.html | 5.99KB Part 01-Module 01-Lesson 08_Momentum Trading/02. Momentum-based Signals.html | 5.99KB Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction.html | 5.99KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.pt-BR.vtt | 5.99KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo.html | 6.00KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. Intro.html | 6.00KB Part 01-Module 04-Lesson 01_Factors/07. De-mean part 2.html | 6.00KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. Summary.html | 6.01KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/01. Instructor.html | 6.01KB Part 03-Module 01-Lesson 05_Scripting/index.html | 6.01KB Part 01-Module 01-Lesson 05_Market Mechanics/07. Quiz Resample Data.html | 6.02KB Part 01-Module 01-Lesson 08_Momentum Trading/01. Designing a Trading Strategy.html | 6.02KB Part 01-Module 01-Lesson 08_Momentum Trading/14. Interlude Global Talent.html | 6.03KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. Summary.html | 6.04KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. M4 L1B 14 PriceVolume Factors V2-zaG0PDc3wsA.en.vtt | 6.04KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/16. Interlude.html | 6.04KB Part 01-Module 04-Lesson 01_Factors/05. Standardizing a factor.html | 6.05KB Part 01-Module 03-Lesson 02_ETFs/04. Hedging.html | 6.05KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. Portfolio Mean.html | 6.05KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. Diversification.html | 6.05KB Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt | 6.05KB Part 10-Module 01-Lesson 01_Intro to NLP/07. Context Is Everything.html | 6.06KB Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html | 6.06KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/06. Code cells.html | 6.07KB Part 02-Module 01-Lesson 03_Text Processing/02. Exercise Text Processing .html | 6.08KB Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning.html | 6.08KB Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.25.34-pm.png | 6.09KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. Value (HML).html | 6.09KB Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing.html | 6.09KB Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout.html | 6.09KB Part 01-Module 03-Lesson 02_ETFs/05. ETF Sponsors.html | 6.10KB Part 01-Module 01-Lesson 06_Data Processing/01. Market Data.html | 6.10KB Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum.html | 6.10KB Part 01-Module 02-Lesson 02_Outliers and Filtering/04. M2L2 03 Outliers Signals And Strategies V5-zyVgpsRy-mU.en.vtt | 6.11KB Part 01-Module 03-Lesson 04_Portfolio Optimization/11. Rebalancing Strategies.html | 6.11KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. Time Series Risk Model.html | 6.11KB Part 04-Module 01-Lesson 02_Vectors/01. What's a Vector.html | 6.11KB Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.zh-CN.vtt | 6.12KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. Intro.html | 6.12KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. Outro.html | 6.12KB Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima.html | 6.13KB Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.zh-CN.vtt | 6.13KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. Welcome!.html | 6.13KB Part 07-Module 01-Lesson 02_Naive Bayes/16. Outro.html | 6.13KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt | 6.13KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html | 6.14KB Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart.html | 6.14KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/15. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.en.vtt | 6.14KB Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization 2.html | 6.15KB Part 07-Module 01-Lesson 02_Naive Bayes/01. Intro.html | 6.15KB Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate Decay.html | 6.15KB Part 06-Module 01-Lesson 07_Bayes Rule/index.html | 6.15KB Part 04-Module 01-Lesson 02_Vectors/03. Vectors, what even are they Part 3.html | 6.15KB Part 04-Module 01-Lesson 02_Vectors/02. Vectors, what even are they Part 2.html | 6.15KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.es-ES.vtt | 6.15KB Part 01-Module 03-Lesson 04_Portfolio Optimization/12. Limitations of the Classical Approach.html | 6.15KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. Trade Pairs of Stocks.html | 6.16KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt | 6.16KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt | 6.16KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. Regularization.html | 6.17KB Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html | 6.17KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt | 6.17KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt | 6.17KB Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt | 6.17KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html | 6.17KB Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient.html | 6.17KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. Estimation Error.html | 6.17KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. Path Dependency.html | 6.18KB Part 02-Module 02-Lesson 04_Training Neural Networks/01. Instructor.html | 6.18KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. Transaction Costs.html | 6.18KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. A different approach.html | 6.18KB Part 02-Module 02-Lesson 04_Training Neural Networks/05. Early Stopping.html | 6.18KB Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data.html | 6.19KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformation and Matrices. Part 3.html | 6.19KB Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.zh-CN.vtt | 6.19KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. Leverage Constraint.html | 6.19KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. Infeasible Problems.html | 6.19KB Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization.html | 6.19KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. Standard Constraints.html | 6.19KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt | 6.20KB Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.zh-CN.vtt | 6.20KB Part 07-Module 01-Lesson 02_Naive Bayes/05. Bayes Theorem.html | 6.20KB Part 01-Module 02-Lesson 03_Regression/17. Summary.html | 6.22KB Part 01-Module 01-Lesson 08_Momentum Trading/09. M1L6 09 Statistical Analysis V10-_p1m_q8jE6E.en.vtt | 6.22KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html | 6.22KB Part 07-Module 01-Lesson 02_Naive Bayes/02. Guess the Person.html | 6.22KB Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging.html | 6.22KB Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt | 6.23KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. Word2Vec Model.html | 6.23KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. Setting Up the Problem Risk.html | 6.23KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html | 6.23KB Part 07-Module 01-Lesson 02_Naive Bayes/03. Known and Inferred.html | 6.24KB Part 02-Module 02-Lesson 04_Training Neural Networks/04. Overfitting and Underfitting.html | 6.24KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. L3 09 Capital Market Line V2-BRO-vo3y0-U.en.vtt | 6.24KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. Setting Up the Problem Alphas.html | 6.24KB Part 01-Module 02-Lesson 03_Regression/02. Distributions.html | 6.25KB Part 07-Module 01-Lesson 02_Naive Bayes/07. Solution False Positives.html | 6.25KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. Negative Sampling.html | 6.25KB Part 07-Module 01-Lesson 02_Naive Bayes/09. Bayesian Learning 2.html | 6.25KB Part 01-Module 02-Lesson 03_Regression/10. Transforming Data.html | 6.26KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. Subsampling Solution.html | 6.26KB Part 01-Module 02-Lesson 03_Regression/11. Linear Regression.html | 6.26KB Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World.html | 6.27KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. Program Overview.html | 6.27KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. Model Validations.html | 6.27KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. SkipGramNeg, Model Definition.html | 6.27KB Part 01-Module 04-Lesson 01_Factors/08. Rescale part 1.html | 6.27KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. Batching Data, Solution.html | 6.28KB Part 01-Module 02-Lesson 03_Regression/15. Regression in Trading.html | 6.28KB Part 07-Module 01-Lesson 02_Naive Bayes/12. Naive Bayes Algorithm 2.html | 6.29KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. Factor Exposure and Position Constraints.html | 6.29KB Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html | 6.29KB Part 01-Module 02-Lesson 03_Regression/18. Interlude Your Brain.html | 6.29KB Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html | 6.29KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. What Is Optimization Doing to Our Alphas.html | 6.29KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. Outro.html | 6.30KB assets/css/fonts/KaTeX_Size4-Regular.woff | 6.30KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/04. Student Hub.html | 6.30KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. Word Embeddings.html | 6.31KB Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.zh-CN.vtt | 6.31KB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt | 6.33KB Part 01-Module 02-Lesson 03_Regression/14. Multivariate Linear Regression.html | 6.33KB Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.zh-CN.vtt | 6.33KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. The Core Idea.html | 6.34KB Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.en.vtt | 6.34KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/index.html | 6.35KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. Vectors Two Ways.html | 6.35KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/index.html | 6.35KB Part 02-Module 01-Lesson 03_Text Processing/05. Normalization.html | 6.36KB Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.zh-CN.vtt | 6.36KB Part 01-Module 01-Lesson 04_Stock Prices/03. Terminology.html | 6.36KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. Bases as Languages.html | 6.36KB Part 01-Module 04-Lesson 01_Factors/13. Zipline Coding Exercises.html | 6.37KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformation and Matrices. Part 2.html | 6.38KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. Embedding Weight MatrixLookup Table.html | 6.38KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. Writing it Down Part 3.html | 6.38KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. Writing it Down Part 4.html | 6.38KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. Writing it Down Part 2.html | 6.38KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. Writing it Down Part 1.html | 6.38KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. The Principal Components.html | 6.38KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt | 6.39KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt | 6.39KB Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html | 6.39KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. PCA as a Factor Model.html | 6.39KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. Statistical Risk Model.html | 6.40KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. Translating Between Bases.html | 6.40KB Part 01-Module 03-Lesson 02_ETFs/09. Arbitrage.html | 6.40KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. PCA as a Factor Model Part 2.html | 6.41KB Part 03-Module 01-Lesson 03_Control Flow/index.html | 6.41KB Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt | 6.41KB Part 03-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html | 6.41KB Part 01-Module 03-Lesson 04_Portfolio Optimization/08. Exercise cvxpy.html | 6.43KB Part 01-Module 04-Lesson 01_Factors/09. Rescale Part 2.html | 6.43KB Part 01-Module 04-Lesson 03_Risk Factor Models/18. Interlude.html | 6.44KB Part 01-Module 04-Lesson 01_Factors/10. Overview for standardizing a factor.html | 6.44KB Part 07-Module 01-Lesson 03_Clustering/13. Sklearn.html | 6.44KB Part 01-Module 01-Lesson 06_Data Processing/06. Trading Days.html | 6.45KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/index.html | 6.45KB Part 06-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html | 6.45KB Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt | 6.46KB Part 01-Module 02-Lesson 05_Volatility/07. Quiz Rolling Windows.html | 6.47KB Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.en.vtt | 6.47KB Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.pt-BR.vtt | 6.47KB Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt | 6.47KB Part 01-Module 03-Lesson 04_Portfolio Optimization/09. Exercise cvxpy advanced optimization.html | 6.47KB Part 01-Module 02-Lesson 02_Outliers and Filtering/03. Outliers Due to Real Events.html | 6.47KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/10. Exercise finding pairs.html | 6.48KB Part 01-Module 01-Lesson 08_Momentum Trading/09. Statistical Analysis.html | 6.49KB Part 01-Module 03-Lesson 02_ETFs/07. Redeeming Shares.html | 6.49KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. Fundamental Factors.html | 6.50KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt | 6.50KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt | 6.50KB Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.pt-BR.vtt | 6.50KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/03. Notebook Sentiment RNN.html | 6.51KB Part 01-Module 02-Lesson 01_Quant Workflow/05. Anatomy of a Strategy.html | 6.51KB Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie.html | 6.51KB Part 01-Module 02-Lesson 05_Volatility/12. M2L5 12 Using Volatility For Equity Trading V5-Vh9ajVRedvY.en.vtt | 6.52KB Part 05-Module 01-Lesson 03_Pandas/01. Instructors.html | 6.52KB Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies.html | 6.52KB Part 01-Module 01-Lesson 06_Data Processing/04. Technical Indicators.html | 6.52KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformation and Matrices . Part 1.html | 6.52KB Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions.html | 6.53KB assets/css/fonts/KaTeX_Size2-Regular.woff | 6.53KB Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt | 6.53KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/03. Refresh Linear Algebra.html | 6.53KB Part 01-Module 04-Lesson 01_Factors/06. De-mean part 1.html | 6.53KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. Complete Model Custom Loss.html | 6.54KB Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt | 6.54KB Part 07-Module 01-Lesson 02_Naive Bayes/10. Bayesian Learning 3.html | 6.54KB Part 05-Module 01-Lesson 02_NumPy/13. Getting Set Up for the Mini-Project.html | 6.55KB Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion.html | 6.55KB Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning.html | 6.55KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. Word2Vec Notebook.html | 6.56KB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary.html | 6.56KB Part 01-Module 02-Lesson 05_Volatility/04. Scale of Volatility.html | 6.56KB Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy.html | 6.57KB Part 01-Module 01-Lesson 08_Momentum Trading/05. Quiz Dtype.html | 6.57KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. Batching Data, Solution.html | 6.58KB Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt | 6.58KB Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability.html | 6.58KB Part 07-Module 01-Lesson 02_Naive Bayes/15. Spam Classifier - Workspace.html | 6.59KB Part 01-Module 01-Lesson 06_Data Processing/12. Index vs ETF.html | 6.59KB Part 01-Module 01-Lesson 05_Market Mechanics/04. Liquidity.html | 6.59KB Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means.html | 6.59KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.en.vtt | 6.61KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt | 6.62KB Part 01-Module 01-Lesson 06_Data Processing/11. M1L4 13 Exchange Traded Funds V4-Zx7v5GCfpvI.en.vtt | 6.62KB Part 04-Module 01-Lesson 02_Vectors/11. Scalar by Vector Multiplication.html | 6.63KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision.html | 6.63KB Part 01-Module 01-Lesson 05_Market Mechanics/03. Trading Stocks.html | 6.63KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. Capital Market Line.html | 6.63KB Part 01-Module 01-Lesson 08_Momentum Trading/08. Quiz Calculate Top and Bottom Performing.html | 6.63KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN vs LSTM.html | 6.64KB Part 07-Module 01-Lesson 04_Decision Trees/01. Intro.html | 6.64KB Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps 3.html | 6.64KB Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.en.vtt | 6.64KB Part 05-Module 01-Lesson 03_Pandas/13. Getting Set Up for the Mini-Project.html | 6.64KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. Basics of LSTM.html | 6.64KB Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.ar.vtt | 6.65KB Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3.html | 6.65KB Part 07-Module 01-Lesson 02_Naive Bayes/04. Guess the Person Now.html | 6.66KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt | 6.66KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt | 6.66KB Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html | 6.67KB Part 07-Module 01-Lesson 02_Naive Bayes/14. Project.html | 6.67KB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html | 6.68KB Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline.html | 6.68KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/09. Quiz np.cov.html | 6.68KB Part 01-Module 01-Lesson 06_Data Processing/04. M1L4 06 Technical Indicators V6-jo740Kq3YN4.en.vtt | 6.68KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. Explained Variance.html | 6.68KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence Batching.html | 6.68KB Part 05-Module 01-Lesson 03_Pandas/14. Mini-Project Statistics From Stock Data.html | 6.68KB Part 01-Module 01-Lesson 08_Momentum Trading/06. Trading Strategy.html | 6.68KB Part 01-Module 02-Lesson 03_Regression/01. Intro.html | 6.68KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. Architecture of LSTM.html | 6.68KB Part 01-Module 01-Lesson 06_Data Processing/03. Corporate Actions Stock Splits.html | 6.68KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-wise RNNs.html | 6.69KB Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html | 6.69KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. Size.html | 6.69KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/03. Knowledge.html | 6.70KB Part 01-Module 03-Lesson 02_ETFs/06. Authorized Participant and the Create Process.html | 6.70KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. Time Series Model specific variance.html | 6.70KB Part 07-Module 01-Lesson 04_Decision Trees/20. Outro.html | 6.70KB Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain.html | 6.70KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html | 6.71KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting it All Together.html | 6.72KB Part 07-Module 01-Lesson 04_Decision Trees/15. Random Forests.html | 6.72KB Part 03-Module 01-Lesson 04_Functions/19. Further Learning.html | 6.72KB Part 04-Module 01-Lesson 01_Introduction/06. Try our workspace out!.html | 6.73KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/17. Feedback.html | 6.73KB Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.en.vtt | 6.73KB Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html | 6.75KB Part 04-Module 01-Lesson 02_Vectors/09. Vector Addition.html | 6.75KB Part 01-Module 04-Lesson 03_Risk Factor Models/01. Intro.html | 6.75KB Part 04-Module 01-Lesson 01_Introduction/02. Instructors.html | 6.76KB Part 01-Module 01-Lesson 08_Momentum Trading/03. Quiz Momentum-based Signals.html | 6.76KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt | 6.76KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt | 6.76KB Part 03-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html | 6.76KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. Cross Section Specific Variance.html | 6.77KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/14. Notebook Negative Sampling.html | 6.78KB Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.en.vtt | 6.78KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/05. Notebook Word2Vec, SkipGram.html | 6.78KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. Fama French SMB and HML.html | 6.78KB Part 05-Module 01-Lesson 02_NumPy/14. Mini-Project Mean Normalization and Data Separation.html | 6.80KB Part 07-Module 01-Lesson 01_Linear Regression/23. Outro.html | 6.80KB Part 01-Module 04-Lesson 03_Risk Factor Models/17. Types of Risk Models.html | 6.82KB assets/css/fonts/KaTeX_Size1-Regular.woff | 6.82KB Part 06-Module 01-Lesson 12_Hypothesis Testing/index.html | 6.82KB Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick.html | 6.82KB Part 07-Module 01-Lesson 01_Linear Regression/05. Moving a Line.html | 6.83KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. Categorical Factors.html | 6.83KB Part 01-Module 01-Lesson 08_Momentum Trading/04. Long and Short Positions.html | 6.83KB Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization.html | 6.83KB Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick.html | 6.83KB Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent.html | 6.84KB Part 06-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html | 6.85KB Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions.html | 6.85KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. Cross Sectional Model.html | 6.85KB Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error.html | 6.86KB Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting a Line Through Data.html | 6.86KB Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error.html | 6.86KB Part 07-Module 01-Lesson 01_Linear Regression/01. Intro.html | 6.87KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.en.vtt | 6.87KB Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression.html | 6.87KB Part 04-Module 01-Lesson 01_Introduction/04. Structure of this lesson.html | 6.88KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. Categorical Variable Estimation.html | 6.88KB Part 07-Module 01-Lesson 04_Decision Trees/06. Solution Student Admissions.html | 6.88KB Part 02-Module 01-Lesson 05_Financial Statements/01. Introduction.html | 6.88KB Part 01-Module 04-Lesson 01_Factors/04. Quiz factor values and weights.html | 6.88KB Part 01-Module 02-Lesson 03_Regression/08. Exercise Normality.html | 6.89KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. The Efficient Frontier.html | 6.89KB Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices.html | 6.89KB Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.en.vtt | 6.89KB Part 02-Module 01-Lesson 05_Financial Statements/18. HTML Structure.html | 6.90KB Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.en.vtt | 6.90KB Part 02-Module 01-Lesson 05_Financial Statements/03. 10-K Walkthrough.html | 6.90KB Part 01-Module 02-Lesson 03_Regression/16. Exercise regression with two stocks.html | 6.92KB Part 02-Module 01-Lesson 05_Financial Statements/02. Financial Statements.html | 6.93KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. 3 Data PreProcessing V1-Xw1MWmql7no.en.vtt | 6.93KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. Time Series Model Factor Exposure.html | 6.93KB Part 02-Module 01-Lesson 05_Financial Statements/05. Introduction to Regexes.html | 6.94KB Part 01-Module 03-Lesson 02_ETFs/08. Lower Operational Costs Taxes.html | 6.94KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. Emotional Intelligence.html | 6.94KB Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html | 6.94KB Part 03-Module 01-Lesson 02_Data Types and Operators/index.html | 6.95KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html | 6.95KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. Implementing a Char-RNN.html | 6.96KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/07. PCA Exercise.html | 6.96KB Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt | 6.96KB Part 02-Module 01-Lesson 05_Financial Statements/16. Introduction to BeautifulSoup.html | 6.96KB Part 01-Module 02-Lesson 03_Regression/04. Parameters of a Distribution.html | 6.97KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/15. PCA Coding Exercise.html | 6.98KB Part 05-Module 01-Lesson 02_NumPy/01. Instructors.html | 6.99KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. Time Series Model Factor Variance.html | 7.00KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/18. PCA as a Factor Model Coding Exercise.html | 7.01KB Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.pt-BR.vtt | 7.01KB Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.pt-BR.vtt | 7.02KB Part 01-Module 02-Lesson 04_Time Series Modeling/06. Kalman Filter.html | 7.03KB Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.en.vtt | 7.03KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.en.vtt | 7.03KB Part 01-Module 04-Lesson 03_Risk Factor Models/10. Variance of one stock.html | 7.04KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/10. Converting notebooks.html | 7.04KB Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution.html | 7.04KB Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.pt-BR.vtt | 7.04KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. TensorDataset Batching Data.html | 7.05KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. The Remember Gate.html | 7.05KB Part 01-Module 02-Lesson 03_Regression/13. Quiz Regression.html | 7.05KB Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.en.vtt | 7.06KB Part 06-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html | 7.06KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. Defining the Model.html | 7.06KB Part 04-Module 01-Lesson 02_Vectors/08. Operations in the Field.html | 7.07KB Part 01-Module 04-Lesson 03_Risk Factor Models/08. Preview of Portfolio Variance Formula.html | 7.07KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.pt-BR.vtt | 7.08KB Part 07-Module 01-Lesson 04_Decision Trees/19. [Solution] Titanic Survival Model.html | 7.08KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. Funds.html | 7.08KB Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.pt-BR.vtt | 7.08KB Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula 3.html | 7.09KB Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2.html | 7.09KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/11. Implementing RNNs.html | 7.09KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other architectures.html | 7.09KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. Summary.html | 7.09KB Part 07-Module 01-Lesson 04_Decision Trees/18. Titanic Survival Model with Decision Trees.html | 7.09KB Part 01-Module 02-Lesson 02_Outliers and Filtering/02. M2L2 02 Sources Of Outliers V8-gXKhKQ2_TaA.en.vtt | 7.10KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. Market Cap.html | 7.11KB Part 04-Module 01-Lesson 02_Vectors/13. Vectors Quiz Answers.html | 7.13KB Part 05-Module 01-Lesson 02_NumPy/12. Creating ndarrays with Broadcasting.html | 7.13KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. Growth V. Value.html | 7.13KB Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html | 7.14KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. SMB.html | 7.14KB Part 01-Module 04-Lesson 03_Risk Factor Models/03. Motivation for Risk Factor Models.html | 7.14KB Part 01-Module 02-Lesson 03_Regression/09. Heteroskedasticity.html | 7.14KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. Hedging Strategies.html | 7.14KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. The Forget Gate.html | 7.15KB Part 03-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html | 7.17KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt | 7.17KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt | 7.17KB Part 01-Module 01-Lesson 06_Data Processing/07. Quiz Trading Experiment.html | 7.18KB Part 01-Module 03-Lesson 04_Portfolio Optimization/05. Portfolio Optimization with 2 Stocks.html | 7.18KB Part 01-Module 04-Lesson 03_Risk Factor Models/07. Factor Model of Portfolio Return.html | 7.18KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. Pairs Trading.html | 7.18KB Part 01-Module 04-Lesson 03_Risk Factor Models/16. Portfolio Variance Exercise.html | 7.18KB Part 01-Module 04-Lesson 03_Risk Factor Models/04. Historical Variance Exercise.html | 7.19KB Part 01-Module 04-Lesson 03_Risk Factor Models/05. Factor Model of Asset Return.html | 7.19KB Part 06-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html | 7.19KB Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.ar.vtt | 7.20KB Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html | 7.20KB Part 03-Module 01-Lesson 04_Functions/06. Variable Scope.html | 7.20KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/05. Quiz Identify Pairs to Trade.html | 7.20KB Part 01-Module 04-Lesson 03_Risk Factor Models/14. Covariance Matrix of Assets Exercise.html | 7.20KB Part 01-Module 04-Lesson 03_Risk Factor Models/06. Factor Model of Asset Return Exercise.html | 7.20KB Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.en.vtt | 7.21KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. Intro Module 3.html | 7.21KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt | 7.21KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt | 7.21KB Part 01-Module 04-Lesson 03_Risk Factor Models/09. Factor Model of Portfolio Return Exercise.html | 7.21KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. Adding or Removing from an Index.html | 7.21KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. Index after Add or Delete.html | 7.21KB Part 02-Module 02-Lesson 04_Training Neural Networks/06. Regularization.html | 7.21KB Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt | 7.22KB Part 01-Module 04-Lesson 03_Risk Factor Models/13. Variance of 2 stocks part 2.html | 7.22KB Part 03-Module 01-Lesson 04_Functions/01. Introduction.html | 7.23KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. The Learn Gate.html | 7.23KB Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.zh-CN.vtt | 7.24KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. Role in AI.html | 7.24KB Part 07-Module 01-Lesson 02_Naive Bayes/13. Building a Spam Classifier.html | 7.25KB Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.pt-BR.vtt | 7.25KB Part 05-Module 01-Lesson 02_NumPy/10. Manipulating ndarrays.html | 7.25KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar.html | 7.26KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/12. Will the Portfolios Be Different.html | 7.26KB Part 01-Module 01-Lesson 06_Data Processing/02. When to Use Time Stamps.html | 7.26KB Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt | 7.27KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. The Use Gate.html | 7.27KB Part 05-Module 01-Lesson 03_Pandas/03. Why Use Pandas.html | 7.28KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. Summary.html | 7.28KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem.html | 7.29KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/18. Dropout Solution.html | 7.29KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/17. Validation Solution.html | 7.29KB Part 06-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals Hypothesis Tests.html | 7.29KB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/Project Rubric - NLP on Financial Statements.html | 7.29KB Part 04-Module 01-Lesson 03_Linear Combination/05. Linear Dependency .html | 7.29KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/15. Fashion-MNIST Solution.html | 7.29KB Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.pt-BR.vtt | 7.29KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/25. Transfer Learning Solution.html | 7.30KB Part 01-Module 02-Lesson 04_Time Series Modeling/04. M2L4 05 Advanced Time Series Models V5-cj1RCBTDog8.en.vtt | 7.30KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/21. Loading Image Data Solution.html | 7.30KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/13. Training a Network Solution.html | 7.31KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/07. Multilayer Networks Solution.html | 7.31KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. Fundamentals.html | 7.31KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. Index Changes.html | 7.31KB Part 01-Module 04-Lesson 03_Risk Factor Models/12. Variance of 2 stocks part 1.html | 7.31KB Part 01-Module 02-Lesson 03_Regression/07. Quiz Normality .html | 7.31KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. Volume Factors.html | 7.32KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. Intro to Lesson.html | 7.32KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. Analyst Ratings.html | 7.32KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/07. Feedback.html | 7.33KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. Mutual Funds.html | 7.33KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. Alternative Data.html | 7.33KB Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar.html | 7.33KB Part 03-Module 01-Lesson 04_Functions/18. Conclusion.html | 7.34KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. Fundamental Ratios.html | 7.34KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. Pre and Post Event.html | 7.34KB Part 01-Module 01-Lesson 06_Data Processing/05. M1L4 08 Missing Values V5-XaMaVFUIc_I.en.vtt | 7.34KB Part 03-Module 01-Lesson 04_Functions/10. Solution Documentation.html | 7.34KB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/Project Rubric - Trading with Momentum.html | 7.34KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. Event-Driven Factors.html | 7.34KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. Momentum or Reversal.html | 7.35KB Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.pt-BR.vtt | 7.35KB Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html | 7.36KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. What is a Factor Model.html | 7.36KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. Factor Model Assumptions.html | 7.37KB Part 05-Module 01-Lesson 02_NumPy/06. Create an ndarray.html | 7.38KB Part 03-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html | 7.38KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. Time-Series Prediction.html | 7.38KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. Expense Ratios.html | 7.39KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. Factor Models in Quant Finance.html | 7.40KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.pt-BR.vtt | 7.41KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. Factor Returns as Latent Variables.html | 7.42KB Part 07-Module 01-Lesson 02_Naive Bayes/06. Quiz False Positives.html | 7.42KB Part 07-Module 01-Lesson 03_Clustering/01. Introduction.html | 7.42KB Part 07-Module 01-Lesson 04_Decision Trees/13. Solution Information Gain.html | 7.42KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.pt-BR.vtt | 7.42KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. Covariance Matrix Using a Factor Model.html | 7.43KB Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html | 7.44KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/17. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.en.vtt | 7.45KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. What is Vision.html | 7.45KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. Hedge Funds.html | 7.46KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. Sentiment Analysis on News and Social Media.html | 7.46KB Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.zh-CN.vtt | 7.47KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. Portfolio Variance.html | 7.47KB Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html | 7.48KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. Transfer Learning.html | 7.48KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. Loading Image Data.html | 7.48KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. How an alpha factor becomes a risk factor part 1.html | 7.48KB Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.pt-BR.vtt | 7.49KB Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt | 7.49KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. Saving and Loading Models.html | 7.50KB Part 04-Module 01-Lesson 02_Vectors/07. Vectors- Quiz 1.html | 7.50KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. Making Predictions.html | 7.52KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. Kalman Prediction.html | 7.52KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/09. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.en.vtt | 7.53KB Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html | 7.54KB Part 01-Module 01-Lesson 08_Momentum Trading/10. The Many Meanings of Alpha.html | 7.55KB Part 01-Module 01-Lesson 05_Market Mechanics/03. M1L3 03 Trading Stocks V3-GHoRtfUrUMc.en.vtt | 7.57KB Part 03-Module 01-Lesson 04_Functions/09. Quiz Documentation.html | 7.57KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. Answer Shifting the Mean.html | 7.58KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. Price-Volume Factors.html | 7.59KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. Answer Predicting the Peak.html | 7.59KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/19. Answer Gaussian Motion.html | 7.60KB Part 04-Module 01-Lesson 02_Vectors/05. Transpose.html | 7.62KB Part 07-Module 01-Lesson 02_Naive Bayes/11. Naive Bayes Algorithm 1.html | 7.64KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. Intro to this lesson.html | 7.64KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. Open End Mutual Funds.html | 7.64KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. Context Word Targets.html | 7.65KB Part 02-Module 01-Lesson 05_Financial Statements/25. The Requests Library.html | 7.65KB Part 02-Module 01-Lesson 05_Financial Statements/15. Applying Regexs to 10-Ks.html | 7.66KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. Fama French Risk Model.html | 7.68KB Part 02-Module 01-Lesson 05_Financial Statements/24. Exercise Get Headers and Paragraphs.html | 7.68KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html | 7.68KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html | 7.69KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. Close End Mutual Funds.html | 7.69KB Part 04-Module 01-Lesson 03_Linear Combination/07. Linear Combination - Quiz 2.html | 7.70KB Part 01-Module 04-Lesson 01_Factors/11. Quiz dollar neutral and leverage ratio.html | 7.73KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/15. Quiz Portfolio Return with a 3-Asset Portfolio.html | 7.73KB Part 03-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html | 7.73KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. Answer Parameter Update.html | 7.74KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. Price Weighting.html | 7.75KB Part 06-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html | 7.76KB Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters.html | 7.76KB Part 06-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html | 7.78KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html | 7.79KB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/Project Rubric - Smart Beta and Portfolio Optimization.html | 7.79KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/22. Pre-Notebook with GPU.html | 7.79KB Part 06-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html | 7.80KB Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html | 7.80KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/01. Intro to RNNs.html | 7.81KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt | 7.81KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt | 7.81KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text.html | 7.81KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/16. Quiz Rate of Returns Over Multiple Periods.html | 7.81KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/09. Neural Networks Solution.html | 7.82KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. Index Categories.html | 7.82KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. Ratios.html | 7.82KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/11. Variations of Pairs Trading and Mean Reversion Trading.html | 7.83KB Part 04-Module 01-Lesson 02_Vectors/10. Vectors- Quiz 2.html | 7.83KB Part 01-Module 02-Lesson 03_Regression/05. Quiz Standard Normal Distribution.html | 7.83KB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html | 7.83KB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html | 7.83KB Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html | 7.83KB Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html | 7.83KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/06. Variance of a 3-Asset Portfolio.html | 7.83KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/08. Neural Networks in PyTorch.html | 7.83KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/16. Inference and Validation.html | 7.83KB Part 01-Module 02-Lesson 03_Regression/12. Breusch Pagan in Depth (Optional).html | 7.84KB Part 02-Module 01-Lesson 05_Financial Statements/06. Raw Strings.html | 7.84KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html | 7.84KB Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html | 7.85KB Part 02-Module 01-Lesson 05_Financial Statements/07. Finding Words .html | 7.85KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.en.vtt | 7.85KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. Risk Factors v. Alpha Factors part 3.html | 7.85KB Part 02-Module 01-Lesson 05_Financial Statements/10. Word Boundaries.html | 7.85KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/06. Networks Using Matrix Multiplication.html | 7.87KB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html | 7.87KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.zh-CN.vtt | 7.87KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/11. Creating a slideshow.html | 7.87KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/04. Single layer neural networks.html | 7.87KB Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html | 7.87KB Part 03-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html | 7.88KB Part 02-Module 01-Lesson 05_Financial Statements/19. Parsing an HTML File.html | 7.88KB Part 02-Module 01-Lesson 05_Financial Statements/13. MetaCharacters Part 3.html | 7.88KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html | 7.88KB Part 02-Module 01-Lesson 05_Financial Statements/12. MetaCharacters Part 2.html | 7.88KB Part 02-Module 01-Lesson 05_Financial Statements/11. MetaCharacters Part 1.html | 7.88KB Part 02-Module 01-Lesson 05_Financial Statements/08. Finding MetaCharacters.html | 7.88KB Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html | 7.88KB Part 02-Module 01-Lesson 05_Financial Statements/14. Substitutions and Flags.html | 7.89KB Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text.html | 7.89KB Part 07-Module 01-Lesson 04_Decision Trees/03. Recommending Apps 2.html | 7.89KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/05. Single layer neural networks solution.html | 7.89KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/10. Implementing Softmax Solution.html | 7.89KB Part 02-Module 01-Lesson 05_Financial Statements/20. Navigating The Parse Tree.html | 7.90KB Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html | 7.90KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/03. Notebook Workspace.html | 7.90KB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/Project Rubric - Breakout Strategy.html | 7.90KB Part 02-Module 01-Lesson 05_Financial Statements/09. Searching For Simple Patterns.html | 7.90KB Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html | 7.91KB Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html | 7.91KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/23. Notebook Workspace w GPU.html | 7.91KB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html | 7.91KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html | 7.92KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function.html | 7.92KB Part 02-Module 01-Lesson 05_Financial Statements/23. Searching The Parse Tree Part 3.html | 7.92KB Part 02-Module 01-Lesson 05_Financial Statements/22. Searching The Parse Tree Part 2.html | 7.92KB Part 02-Module 01-Lesson 05_Financial Statements/21. Searching The Parse Tree Part 1.html | 7.92KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/11. Network Architectures in PyTorch.html | 7.92KB Part 06-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html | 7.92KB Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html | 7.93KB Part 07-Module 01-Lesson 04_Decision Trees/09. Entropy Formula 2.html | 7.94KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/03. Matrix Addition Quiz.html | 7.94KB Part 03-Module 01-Lesson 05_Scripting/29. Conclusion.html | 7.96KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/27. Interlude.html | 7.96KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif | 7.96KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif | 7.96KB Part 06-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html | 7.99KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Answer Predict Function.html | 7.99KB Part 03-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html | 7.99KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Answer 1D Kalman Filter.html | 8.00KB Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means.html | 8.00KB Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.en.vtt | 8.00KB Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html | 8.00KB Part 04-Module 01-Lesson 03_Linear Combination/08. Linear Combination - Quiz 3.html | 8.00KB Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html | 8.00KB Part 06-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html | 8.01KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/21. Notebook Predict Function.html | 8.01KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/24. Notebook 1D Kalman Filter.html | 8.01KB Part 01-Module 04-Lesson 03_Risk Factor Models/11. Taking constants out of Variance and Covariance (optional).html | 8.02KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. Summary.html | 8.02KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/16. Notebook New Mean and Variance.html | 8.02KB Part 07-Module 01-Lesson 04_Decision Trees/05. Quiz Student Admissions.html | 8.03KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt | 8.03KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt | 8.03KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/27. Next Motion Models and State.html | 8.04KB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters.html | 8.04KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/12. Network Architectures Solution.html | 8.04KB Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html | 8.04KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. Classifying Fashion-MNIST.html | 8.05KB Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html | 8.05KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/06. Answer Gaussian Intro.html | 8.05KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. Other Alternative Data.html | 8.05KB Part 03-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html | 8.06KB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2.html | 8.06KB Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt | 8.07KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. iVol Arbitrage Risk.html | 8.08KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code.html | 8.08KB Part 04-Module 01-Lesson 01_Introduction/07. Try our workspace again!.html | 8.08KB Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.pt-BR.vtt | 8.09KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. NLP used to enhance Fundamental Analysis.html | 8.09KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction.html | 8.09KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. Your Instructors.html | 8.11KB Part 06-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html | 8.11KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. iVOL Quantamental Investing.html | 8.12KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. iVol Idiosyncratic Volatility.html | 8.13KB Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html | 8.13KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. Data Subsampling.html | 8.13KB Part 06-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html | 8.13KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. Training a Model.html | 8.14KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/02. Pre-Notebook Sentiment RNN.html | 8.14KB Part 06-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html | 8.14KB Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt | 8.15KB Part 07-Module 01-Lesson 01_Linear Regression/12. Mean vs Total Error.html | 8.16KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. Skewness and Momentum Defining Skew.html | 8.16KB Part 07-Module 01-Lesson 01_Linear Regression/02. Quiz Housing Prices.html | 8.16KB assets/css/fonts/KaTeX_Size3-Regular.ttf | 8.16KB Part 06-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html | 8.17KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. iVol Generalizing the volatility Factor.html | 8.18KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. Overnight Returns Data, Universe, Methods.html | 8.18KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. Overnight Returns Possible Alpha Factors.html | 8.18KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/04. Terminology.html | 8.18KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. Skewness and Momentum Conditional Factor.html | 8.18KB Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.pt-BR.vtt | 8.18KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. Winners and Losers Creating a joint factor.html | 8.19KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. Solution New Mean and Variance.html | 8.19KB Part 04-Module 01-Lesson 03_Linear Combination/04. Linear Combination -Quiz 1.html | 8.19KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html | 8.20KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. Active vs. Passive.html | 8.20KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. Overnight Returns Methods Quantile Analysis.html | 8.20KB Part 05-Module 01-Lesson 03_Pandas/07. Manipulate a Series.html | 8.20KB Part 01-Module 01-Lesson 04_Stock Prices/02. Stock Prices.html | 8.20KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. iVol Arbitrage and Efficient Pricing of Stocks.html | 8.21KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. iVol Value, Fundamental or Discretionary Investing.html | 8.23KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html | 8.23KB Part 03-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html | 8.23KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html | 8.23KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html | 8.23KB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html | 8.23KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. iVol Joint Factor Volatility Enhanced Price Earnings Ratio.html | 8.23KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/04. Answer Tracking Intro.html | 8.24KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html | 8.25KB Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html | 8.25KB Part 06-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html | 8.25KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. Winners and Losers approximating curves with polynomials.html | 8.26KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html | 8.26KB Part 05-Module 01-Lesson 02_NumPy/03. Why Use NumPy.html | 8.27KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. Skewness and Momentum Momentum Enhanced or weakened by Skew.html | 8.27KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html | 8.28KB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization.html | 8.28KB Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.en.vtt | 8.29KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. Winners and Losers Accelerated and Decelerated Gains and Losses.html | 8.29KB Part 03-Module 01-Lesson 04_Functions/11. Lambda Expressions.html | 8.30KB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html | 8.30KB Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library.html | 8.30KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.pt-BR.vtt | 8.31KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html | 8.31KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/08. Answer Variance and Preferred Gaussian.html | 8.31KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. Risk Factors v. Alpha Factors part 2.html | 8.32KB Part 06-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html | 8.33KB Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html | 8.34KB Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2.html | 8.35KB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands).html | 8.35KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt | 8.35KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt | 8.35KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html | 8.36KB Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html | 8.36KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/01. What is a Matrix.html | 8.36KB Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html | 8.36KB Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html | 8.37KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction.html | 8.38KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html | 8.38KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/37. Outro.html | 8.38KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html | 8.38KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html | 8.38KB Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula 1.html | 8.39KB Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html | 8.39KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/13. Pre-Notebook Negative Sampling.html | 8.39KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/08. Calculate a Covariance Matrix.html | 8.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions.html | 8.40KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html | 8.40KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html | 8.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html | 8.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html | 8.40KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html | 8.40KB Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.pt-BR.vtt | 8.41KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. Risk Factors v. Alpha Factors.html | 8.41KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html | 8.41KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html | 8.41KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. Char-RNN, Solution.html | 8.41KB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html | 8.41KB Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html | 8.41KB Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html | 8.41KB Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html | 8.41KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html | 8.42KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html | 8.42KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html | 8.42KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html | 8.42KB Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html | 8.42KB Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula.html | 8.42KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/05. Reducing Risk.html | 8.43KB Part 03-Module 01-Lesson 05_Scripting/01. Introduction.html | 8.45KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html | 8.45KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html | 8.45KB Part 01-Module 02-Lesson 04_Time Series Modeling/04. Advanced Time Series Models.html | 8.45KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html | 8.45KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html | 8.45KB Part 03-Module 01-Lesson 03_Control Flow/34. Conclusion.html | 8.46KB Part 05-Module 01-Lesson 03_Pandas/02. Introduction to Pandas.html | 8.47KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html | 8.47KB Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html | 8.48KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html | 8.48KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html | 8.48KB Part 07-Module 01-Lesson 01_Linear Regression/13. Mini-batch Gradient Descent.html | 8.48KB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html | 8.49KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. Transaction Costs.html | 8.50KB Part 01-Module 01-Lesson 08_Momentum Trading/07. Quiz Momentum-based Portfolio.html | 8.50KB Part 01-Module 01-Lesson 06_Data Processing/10. Price Earnings Ratio.html | 8.50KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/04. Pre-Notebook Word2Vec, SkipGram.html | 8.51KB Part 03-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html | 8.51KB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html | 8.52KB Part 07-Module 01-Lesson 04_Decision Trees/11. Multiclass Entropy.html | 8.53KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html | 8.53KB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html | 8.54KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/26. Tips, Tricks, and Other Notes.html | 8.54KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/01. Instructor.html | 8.54KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html | 8.54KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages.html | 8.55KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. Training Memory.html | 8.55KB Part 03-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html | 8.55KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt | 8.56KB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html | 8.57KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/16. Notebook Character-Level RNN.html | 8.57KB Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html | 8.59KB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. How an alpha factor becomes a risk factor part 2.html | 8.60KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/02. Pre-Notebook.html | 8.60KB Part 01-Module 04-Lesson 06_Alpha Factors/index.html | 8.61KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. Student Support.html | 8.61KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. Kalman Filters and Linear Algebra.html | 8.62KB Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages.html | 8.62KB Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html | 8.62KB Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html | 8.62KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html | 8.65KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html | 8.65KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. Net Asset Value.html | 8.65KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. Hang Seng Index Construction.html | 8.66KB Part 02-Module 01-Lesson 05_Financial Statements/17. Parsers.html | 8.67KB Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2.html | 8.67KB Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4.html | 8.68KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html | 8.68KB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html | 8.69KB Part 06-Module 01-Lesson 04_Probability/18. Doubles.html | 8.70KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/07. Overnight Returns exercise.html | 8.70KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/12. 3 or more stocks (optional).html | 8.70KB Part 05-Module 01-Lesson 02_NumPy/02. Introduction to NumPy.html | 8.70KB Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.ar.vtt | 8.71KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html | 8.71KB Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html | 8.72KB Part 03-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html | 8.72KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/13. Winners and Losers in Momentum Exercise.html | 8.72KB Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html | 8.72KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/02. Matrix Addition.html | 8.73KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html | 8.73KB Part 06-Module 01-Lesson 04_Probability/03. Fair Coin.html | 8.74KB Part 03-Module 01-Lesson 04_Functions/08. Documentation.html | 8.74KB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2.html | 8.74KB Part 07-Module 01-Lesson 01_Linear Regression/20. Linear Regression Warnings.html | 8.75KB Part 06-Module 01-Lesson 04_Probability/13. One Head 1.html | 8.76KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.en.vtt | 8.77KB Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt | 8.78KB Part 07-Module 01-Lesson 04_Decision Trees/12. Quiz Information Gain.html | 8.78KB Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5.html | 8.79KB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1.html | 8.79KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html | 8.79KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html | 8.79KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.en.vtt | 8.79KB Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html | 8.80KB Part 06-Module 01-Lesson 04_Probability/17. Even Roll.html | 8.80KB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html | 8.80KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html | 8.81KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html | 8.81KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. Market Cap Weighting.html | 8.82KB Part 03-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html | 8.82KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. Case Studies Intro.html | 8.82KB Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html | 8.83KB Part 01-Module 04-Lesson 03_Risk Factor Models/02. install libraries.html | 8.83KB Part 03-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html | 8.84KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html | 8.84KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html | 8.84KB Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types of Errors - Part I.html | 8.84KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. Tracking Intro.html | 8.84KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html | 8.85KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html | 8.85KB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1.html | 8.85KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/08. Quiz Pipeline Steps.html | 8.85KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/06. Square Matrix Multiplication Quiz.html | 8.86KB Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion.html | 8.87KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. The Covariance Matrix and Quadratic Forms.html | 8.88KB Part 06-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html | 8.89KB Part 03-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html | 8.89KB Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions.html | 8.89KB Part 04-Module 01-Lesson 02_Vectors/06. Magnitude and Direction .html | 8.89KB Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.ar.vtt | 8.90KB Part 01-Module 03-Lesson 02_ETFs/10. Arbitrage for Efficient ETF Pricing.html | 8.90KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/16. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.en.vtt | 8.91KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.pt-BR.vtt | 8.92KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png | 8.94KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png | 8.94KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. Quiz Predicting the Peak.html | 8.94KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html | 8.94KB Part 01-Module 04-Lesson 03_Risk Factor Models/15. Portfolio Variance using Factor Model.html | 8.95KB Part 03-Module 01-Lesson 03_Control Flow/01. Introduction.html | 8.99KB Part 04-Module 01-Lesson 02_Vectors/12. Vectors Quiz 3.html | 8.99KB Part 01-Module 01-Lesson 08_Momentum Trading/12. Quiz Statistical Analysis.html | 9.00KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. Quiz Shifting the Mean.html | 9.00KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html | 9.03KB Part 01-Module 02-Lesson 03_Regression/06. Testing for Normality.html | 9.03KB Part 03-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html | 9.04KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. Computer Vision Pipeline.html | 9.04KB Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html | 9.04KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html | 9.04KB Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.pt-BR.vtt | 9.05KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html | 9.06KB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/05. Counting Words.html | 9.06KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/04. Scalar Multiplication of Matrix and Quiz.html | 9.07KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html | 9.07KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html | 9.08KB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html | 9.09KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html | 9.09KB Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html | 9.12KB Part 03-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html | 9.12KB Part 03-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html | 9.12KB Part 01-Module 03-Lesson 04_Portfolio Optimization/12. L4 13 Limitations V2-UbbZa7-3iuk.en.vtt | 9.13KB Part 10-Module 01-Lesson 01_Intro to NLP/06. Counting Words.html | 9.13KB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins.html | 9.14KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt | 9.14KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt | 9.14KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html | 9.14KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html | 9.15KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html | 9.15KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html | 9.16KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. How an Index is Constructed.html | 9.18KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/08. Matrix Multiplication Quiz.html | 9.19KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html | 9.19KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. Indices.html | 9.20KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. Gaussian Intro.html | 9.20KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html | 9.21KB Part 01-Module 03-Lesson 04_Portfolio Optimization/02. What is Optimization.html | 9.24KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html | 9.25KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html | 9.25KB Part 03-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html | 9.25KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. Quiz Parameter Update.html | 9.28KB Part 03-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html | 9.28KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.52.09-pm.png | 9.29KB Part 03-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html | 9.29KB Part 06-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html | 9.29KB Part 03-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html | 9.30KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html | 9.31KB Part 06-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html | 9.31KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. Quiz Gaussian Motion.html | 9.32KB Part 03-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html | 9.32KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Gaussian Function and Maximum.html | 9.32KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.en.vtt | 9.34KB Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Video Calculating the p-value.html | 9.37KB Part 03-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html | 9.37KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html | 9.39KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/05. Notebook interface.html | 9.41KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. Smart Beta.html | 9.42KB Part 04-Module 01-Lesson 02_Vectors/04. Vectors- Mathematical definition .html | 9.44KB Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3.html | 9.45KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt | 9.45KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt | 9.45KB Part 03-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html | 9.45KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/35. Pre-Notebook Analyzing Student Data.html | 9.45KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Notebook Analyzing Student Data.html | 9.45KB Part 03-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html | 9.46KB Part 07-Module 01-Lesson 02_Naive Bayes/08. Bayesian Learning 1.html | 9.46KB Part 03-Module 01-Lesson 05_Scripting/05. Running a Python Script.html | 9.46KB Part 01-Module 03-Lesson 04_Portfolio Optimization/04. Two-Asset Portfolio Optimization.html | 9.48KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/11. Winners and Losers Content Quiz.html | 9.48KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/07. Markdown cells.html | 9.49KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. Handling Withdrawals.html | 9.49KB Part 03-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html | 9.49KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html | 9.52KB Part 03-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html | 9.52KB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again).html | 9.52KB Part 03-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html | 9.53KB Part 02-Module 01-Lesson 05_Financial Statements/04. Quiz 10-Ks and EDGAR.html | 9.53KB Part 01-Module 03-Lesson 02_ETFs/03. How ETFs are Used.html | 9.56KB Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html | 9.56KB Part 04-Module 01-Lesson 03_Linear Combination/03. Linear Combination and Span.html | 9.57KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. Computer Vision Applications.html | 9.57KB Part 03-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html | 9.58KB Part 03-Module 01-Lesson 04_Functions/05. Variable Scope.html | 9.60KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html | 9.60KB Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters.html | 9.60KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html | 9.60KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html | 9.61KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html | 9.61KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html | 9.62KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html | 9.62KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html | 9.62KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html | 9.62KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html | 9.63KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html | 9.63KB Part 06-Module 01-Lesson 04_Probability/14. One Head 2.html | 9.65KB Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html | 9.66KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html | 9.67KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html | 9.68KB Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions in Hypothesis Testing.html | 9.68KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. Feedforward.html | 9.69KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html | 9.69KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html | 9.70KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html | 9.71KB Part 06-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html | 9.72KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html | 9.73KB Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.ar.vtt | 9.73KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html | 9.73KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/04. PyTorch V2 Part 1 V1-6Z7WntXays8.en.vtt | 9.75KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.pt-BR.vtt | 9.75KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html | 9.80KB Part 03-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html | 9.80KB Part 06-Module 01-Lesson 12_Hypothesis Testing/29. Other Things to Consider - How Do CIs and HTs Compare.html | 9.81KB Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html | 9.81KB Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values.html | 9.82KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/13. Testing.html | 9.85KB Part 07-Module 01-Lesson 04_Decision Trees/02. Recommending Apps 1.html | 9.87KB Part 01-Module 01-Lesson 06_Data Processing/09. Fundamental Information.html | 9.87KB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/Project Rubric - Multi-factor Model.html | 9.87KB Part 03-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html | 9.87KB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem SC V1-uyl44T12yU8.en.vtt | 9.88KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html | 9.89KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/09. Magic keywords.html | 9.91KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html | 9.91KB Part 04-Module 01-Lesson 01_Introduction/05. Working with Equations.html | 9.92KB Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Video Simulating from the Null.html | 9.92KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html | 9.93KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html | 9.95KB Part 03-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html | 9.95KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/13. Other Risk Measures.html | 9.97KB Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html | 9.97KB Part 03-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html | 9.99KB Part 03-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html | 10.00KB Part 03-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html | 10.01KB Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Other Things to Consider - What if Test More Than Once.html | 10.06KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html | 10.06KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html | 10.06KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/07. Matrix Multiplication - General.html | 10.07KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html | 10.08KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html | 10.08KB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html | 10.08KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html | 10.08KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html | 10.08KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html | 10.09KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping The Central Limit Theorem.html | 10.10KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html | 10.12KB Part 01-Module 02-Lesson 03_Regression/06. Testing For Normalilty-Sa1MJegyYfc.en.vtt | 10.13KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. Overnight Returns Abstract.html | 10.14KB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html | 10.15KB Part 03-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html | 10.15KB assets/css/fonts/KaTeX_Caligraphic-Regular.woff2 | 10.17KB Part 05-Module 01-Lesson 03_Pandas/04. Creating Pandas Series.html | 10.18KB Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html | 10.18KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. Skewness and Momentum Attentional Bias.html | 10.19KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html | 10.21KB Part 06-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html | 10.22KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/05. Multiplication of a Square Matrices.html | 10.23KB Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html | 10.24KB Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html | 10.24KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html | 10.25KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html | 10.25KB Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html | 10.25KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.pt-BR.vtt | 10.26KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.pt-BR.vtt | 10.26KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/07. Quiz Variance and Preferred Gaussian.html | 10.27KB Part 03-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html | 10.27KB Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html | 10.27KB Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html | 10.27KB Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html | 10.27KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html | 10.28KB Part 05-Module 01-Lesson 03_Pandas/11. Manipulate a DataFrame.html | 10.29KB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/08. Alternative Ways of Setting Up the Problem.html | 10.29KB Part 06-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html | 10.30KB Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html | 10.32KB Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types of Errors - Part II.html | 10.32KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.en.vtt | 10.34KB Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html | 10.34KB assets/css/fonts/KaTeX_Caligraphic-Bold.woff2 | 10.35KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/02. install libraries.html | 10.35KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html | 10.35KB Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.pt-BR.vtt | 10.38KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html | 10.38KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. Mean Reversion.html | 10.39KB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. Relative and Absolute Returns.html | 10.40KB Part 01-Module 01-Lesson 08_Momentum Trading/11. Quiz Test Returns for Statistical Significance.html | 10.40KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.pt-BR.vtt | 10.41KB Part 03-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html | 10.42KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html | 10.42KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/05. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.en.vtt | 10.42KB Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types of Errors - Part III.html | 10.43KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/26. Pre-Notebook Gradient Descent.html | 10.44KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Notebook Gradient Descent.html | 10.44KB Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html | 10.44KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html | 10.44KB Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html | 10.44KB Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html | 10.44KB Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html | 10.45KB Part 06-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html | 10.45KB Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html | 10.45KB Part 06-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html | 10.45KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/12. The Sharpe Ratio.html | 10.45KB Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html | 10.47KB Part 03-Module 01-Lesson 03_Control Flow/20. While Loops.html | 10.47KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.pt-BR.vtt | 10.48KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.en.vtt | 10.50KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html | 10.52KB Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html | 10.53KB Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html | 10.53KB Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html | 10.54KB Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html | 10.54KB Part 03-Module 01-Lesson 02_Data Types and Operators/29. Sets.html | 10.56KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. Cointegration.html | 10.56KB Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Error vs Squared Error.html | 10.56KB Part 06-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html | 10.58KB Part 03-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html | 10.59KB Part 03-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html | 10.60KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html | 10.62KB Part 03-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html | 10.64KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html | 10.65KB Part 06-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html | 10.66KB Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html | 10.67KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.en.vtt | 10.67KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html | 10.68KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html | 10.68KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html | 10.69KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html | 10.69KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/04. Launching the notebook server.html | 10.69KB Part 03-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html | 10.69KB Part 03-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html | 10.70KB Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypothesis Tests - Part II.html | 10.73KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.pt-BR.vtt | 10.73KB Part 03-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html | 10.77KB Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.zh-CN.vtt | 10.77KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html | 10.78KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html | 10.78KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/img/sml-chart.png | 10.78KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. Winners and Losers in Momentum Investing.html | 10.81KB Part 01-Module 04-Lesson 06_Alpha Factors/50. Summary.html | 10.83KB Part 01-Module 04-Lesson 06_Alpha Factors/13. Z score.html | 10.83KB Part 01-Module 04-Lesson 06_Alpha Factors/16. Smoothing.html | 10.84KB Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html | 10.85KB Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html | 10.85KB Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests.html | 10.85KB Part 01-Module 04-Lesson 06_Alpha Factors/27. Sharpe Ratio.html | 10.85KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.en.vtt | 10.86KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt | 10.86KB Part 01-Module 04-Lesson 06_Alpha Factors/19. Factor Returns.html | 10.86KB Part 01-Module 04-Lesson 06_Alpha Factors/09. Ranking Part 1.html | 10.86KB Part 01-Module 04-Lesson 06_Alpha Factors/10. Ranking Part 2.html | 10.86KB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html | 10.87KB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.en.vtt | 10.87KB Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.en.vtt | 10.87KB Part 01-Module 04-Lesson 06_Alpha Factors/48. It’s all Relative.html | 10.88KB Part 01-Module 04-Lesson 06_Alpha Factors/49. Conditional Factors.html | 10.89KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html | 10.89KB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses.html | 10.89KB Part 01-Module 04-Lesson 06_Alpha Factors/46. Transfer Coefficient.html | 10.89KB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html | 10.92KB Part 01-Module 04-Lesson 06_Alpha Factors/41. Quantile Analysis Part 1.html | 10.92KB Part 01-Module 04-Lesson 06_Alpha Factors/23. Universe construction rule.html | 10.92KB Part 01-Module 04-Lesson 06_Alpha Factors/53. Interlude Reading Academic Research Papers, Part 3.html | 10.94KB Part 01-Module 04-Lesson 06_Alpha Factors/51. Interlude Reading Academic Research Papers, Part 1.html | 10.94KB Part 01-Module 04-Lesson 06_Alpha Factors/52. Interlude Reading Academic Research Papers, Part 2.html | 10.94KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html | 10.94KB Part 06-Module 01-Lesson 12_Hypothesis Testing/27. Other Things to Consider - What if Our Sample is Large.html | 10.96KB Part 01-Module 04-Lesson 06_Alpha Factors/36. Real World Constraints Liquidity.html | 10.96KB Part 03-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html | 10.97KB Part 03-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html | 10.97KB Part 03-Module 01-Lesson 05_Scripting/02. Python Installation.html | 10.97KB Part 01-Module 04-Lesson 06_Alpha Factors/39. Factor Rank Autocorrelation (Turnover).html | 10.98KB Part 06-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html | 10.98KB Part 01-Module 04-Lesson 06_Alpha Factors/05. Researching Alphas from Academic Papers.html | 10.99KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html | 10.99KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html | 10.99KB Part 01-Module 04-Lesson 06_Alpha Factors/03. Alpha Factors versus Risk Factor Modeling.html | 11.00KB Part 01-Module 04-Lesson 06_Alpha Factors/37. Real World Constraints Transaction Costs.html | 11.00KB Part 06-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability Bayes Rule Quiz.html | 11.00KB Part 01-Module 04-Lesson 06_Alpha Factors/30. Ranked Information Coefficient (Rank IC) Part 1.html | 11.00KB Part 01-Module 04-Lesson 06_Alpha Factors/31. Ranked Information Coefficient (Rank IC) Part 2.html | 11.00KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html | 11.01KB Part 01-Module 04-Lesson 06_Alpha Factors/45. Quantiles Academic Research vs. Practitioners.html | 11.01KB Part 01-Module 04-Lesson 06_Alpha Factors/38. Turnover as a Proxy for Real World Constraints.html | 11.02KB assets/css/fonts/KaTeX_Size4-Regular.ttf | 11.02KB Part 01-Module 04-Lesson 06_Alpha Factors/24. Return Denominator, Leverage, and Factor Returns.html | 11.02KB Part 06-Module 01-Lesson 12_Hypothesis Testing/08. Quiz Types of Errors - Part I.html | 11.03KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/07. ADF and roots.html | 11.03KB Part 01-Module 04-Lesson 06_Alpha Factors/34. The Fundamental Law of Active Management Part 1.html | 11.03KB Part 03-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html | 11.03KB Part 01-Module 04-Lesson 06_Alpha Factors/07. Controlling for Risk within an Alpha Factor Part 2.html | 11.04KB Part 01-Module 04-Lesson 06_Alpha Factors/06. Controlling for Risk within an Alpha Factor Part 1.html | 11.04KB Part 06-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses.html | 11.05KB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. iVol Value and Idiosyncratic volatility Overview.html | 11.05KB Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html | 11.07KB Part 01-Module 04-Lesson 06_Alpha Factors/01. Intro Efficient Market hypothesis and Arbitrage opportunities.html | 11.10KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html | 11.11KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.pt-BR.vtt | 11.12KB Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What is a p-value Anyway.html | 11.13KB Part 01-Module 04-Lesson 06_Alpha Factors/29. Halfway There!.html | 11.18KB Part 03-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html | 11.18KB Part 03-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html | 11.22KB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html | 11.23KB Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors.html | 11.26KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/13. Details of Johansen Test (optional).html | 11.26KB Part 01-Module 02-Lesson 03_Regression/03. Exercise Visualize Distributions.html | 11.30KB Part 03-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html | 11.30KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html | 11.30KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2017-10-27-at-1.49.58-pm.png | 11.37KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html | 11.37KB Part 03-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html | 11.37KB Part 01-Module 04-Lesson 06_Alpha Factors/42. Quantile Analysis Part 2.html | 11.37KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.en.vtt | 11.40KB Part 03-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html | 11.40KB Part 03-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html | 11.41KB Part 03-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html | 11.43KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html | 11.46KB Part 01-Module 04-Lesson 06_Alpha Factors/14. z-score quiz.html | 11.46KB Part 01-Module 04-Lesson 06_Alpha Factors/12. Ranking exercise.html | 11.49KB Part 01-Module 04-Lesson 06_Alpha Factors/15. z-score exercise.html | 11.49KB Part 01-Module 04-Lesson 06_Alpha Factors/40. Turnover Exercise.html | 11.49KB Part 01-Module 04-Lesson 06_Alpha Factors/18. Smoothing Exercise.html | 11.49KB Part 01-Module 04-Lesson 06_Alpha Factors/08. Sector Neutral Exercise.html | 11.50KB Part 01-Module 04-Lesson 06_Alpha Factors/33. Rank IC coding exercise.html | 11.50KB Part 01-Module 04-Lesson 06_Alpha Factors/44. Quantile analysis exercise.html | 11.51KB Part 01-Module 04-Lesson 06_Alpha Factors/28. Sharpe Ratio Coding Exercise.html | 11.51KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html | 11.51KB Part 01-Module 04-Lesson 06_Alpha Factors/26. Factor returns coding exercise.html | 11.52KB Part 01-Module 04-Lesson 06_Alpha Factors/22. Factor and forward returns exercise.html | 11.53KB Part 01-Module 04-Lesson 06_Alpha Factors/47. Transfer Coefficient Coding Exercise.html | 11.53KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.en.vtt | 11.56KB assets/css/fonts/KaTeX_Caligraphic-Regular.woff | 11.59KB Part 01-Module 04-Lesson 06_Alpha Factors/04. Definition of key words.html | 11.61KB Part 06-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html | 11.65KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/14. The Capital Assets Pricing Model.html | 11.66KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Support.html | 11.68KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. Time Management.html | 11.69KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html | 11.69KB Part 01-Module 03-Lesson 04_Portfolio Optimization/07. cvxpy.html | 11.69KB Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.en.vtt | 11.69KB Part 03-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html | 11.71KB Part 01-Module 04-Lesson 06_Alpha Factors/32. Quiz factor_information_coefficient.html | 11.76KB Part 06-Module 01-Lesson 12_Hypothesis Testing/22. Quiz Calculating a p-value.html | 11.77KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html | 11.78KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html | 11.79KB Part 03-Module 01-Lesson 03_Control Flow/25. Break, Continue.html | 11.83KB assets/css/fonts/KaTeX_Caligraphic-Bold.woff | 11.85KB Part 01-Module 04-Lesson 06_Alpha Factors/25. Making dollar neutral and leverage ratio equal to one.html | 11.85KB Part 01-Module 01-Lesson 07_Stock Returns/05. Distributions of Returns and Prices.html | 11.91KB Part 03-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html | 11.97KB Part 03-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html | 11.98KB assets/css/fonts/KaTeX_Script-Regular.woff2 | 11.99KB Part 01-Module 04-Lesson 06_Alpha Factors/43. mean returns by quantile quiz.html | 11.99KB Part 06-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html | 12.01KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html | 12.03KB Part 01-Module 04-Lesson 06_Alpha Factors/17. Smoothing Quiz 1.html | 12.09KB Part 03-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html | 12.10KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/01. Welcome!.html | 12.10KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/10. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.en.vtt | 12.12KB assets/css/fonts/KaTeX_Size2-Regular.ttf | 12.12KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html | 12.13KB Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings.html | 12.14KB Part 03-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html | 12.14KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/11. Complete Sentiment RNN.html | 12.18KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/12. Linear Transformation Quiz Answers.html | 12.21KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html | 12.22KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html | 12.22KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html | 12.23KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html | 12.24KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html | 12.26KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. What are Jupyter notebooks.html | 12.27KB Part 01-Module 04-Lesson 06_Alpha Factors/35. The Fundamental Law of Active Management Part 2.html | 12.35KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html | 12.41KB Part 01-Module 04-Lesson 06_Alpha Factors/21. get_clean_factor_and_forward_returns.html | 12.42KB Part 07-Module 01-Lesson 04_Decision Trees/16. Hyperparameters.html | 12.43KB Part 03-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html | 12.51KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html | 12.51KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html | 12.51KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/12. Training the Model.html | 12.53KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html | 12.54KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/14. Inference, Solution.html | 12.59KB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html | 12.60KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html | 12.65KB Part 03-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html | 12.66KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Softmax.html | 12.74KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html | 12.74KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html | 12.80KB Part 03-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html | 12.83KB assets/css/fonts/KaTeX_Size1-Regular.ttf | 12.86KB Part 03-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html | 12.91KB Part 03-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html | 12.93KB Part 03-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html | 12.97KB Part 03-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html | 12.99KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html | 13.07KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html | 13.07KB Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html | 13.11KB Part 01-Module 04-Lesson 06_Alpha Factors/20. Factor returns quiz.html | 13.14KB Part 01-Module 04-Lesson 06_Alpha Factors/02. install libraries.html | 13.16KB Part 07-Module 01-Lesson 01_Linear Regression/17. Multiple Linear Regression.html | 13.18KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.zh-CN.vtt | 13.19KB Part 05-Module 01-Lesson 02_NumPy/09. Boolean Indexing, Set Operations, and Sorting.html | 13.22KB Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.pt-BR.vtt | 13.35KB Part 06-Module 01-Lesson 12_Hypothesis Testing/10. Quiz Types of Errors - Part II(a).html | 13.36KB Part 04-Module 01-Lesson 03_Linear Combination/06. Solving a Simplified Set of Equations.html | 13.45KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/25. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.en.vtt | 13.49KB Part 05-Module 01-Lesson 03_Pandas/06. Arithmetic Operations on Pandas Series.html | 13.52KB assets/css/fonts/KaTeX_Script-Regular.woff | 13.53KB Part 03-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html | 13.57KB Part 03-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html | 13.69KB assets/css/fonts/KaTeX_SansSerif-Regular.woff2 | 13.70KB Part 05-Module 01-Lesson 03_Pandas/05. Accessing and Deleting Elements in Pandas Series.html | 13.71KB Part 03-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html | 13.72KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html | 13.78KB Part 03-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html | 13.91KB Part 03-Module 01-Lesson 05_Scripting/28. Online Resources.html | 13.94KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html | 13.97KB Part 03-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html | 14.06KB Part 06-Module 01-Lesson 12_Hypothesis Testing/21. Quiz What is a p-value Anyway.html | 14.13KB Part 03-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html | 14.18KB Part 03-Module 01-Lesson 03_Control Flow/10. For Loops.html | 14.21KB Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline SC V1-DHTwIwVk_sc.en.vtt | 14.24KB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html | 14.25KB Part 07-Module 01-Lesson 01_Linear Regression/19. (Optional) Closed form Solution Math.html | 14.26KB Part 03-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html | 14.26KB Part 03-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html | 14.38KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html | 14.47KB Part 03-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html | 14.49KB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html | 14.58KB Part 06-Module 01-Lesson 12_Hypothesis Testing/26. Notebook + Quiz Drawing Conclusions.html | 14.59KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html | 14.60KB Part 03-Module 01-Lesson 02_Data Types and Operators/39. Summary.html | 14.66KB Part 03-Module 01-Lesson 05_Scripting/img/step1-cd.png | 14.68KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html | 14.74KB Part 06-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html | 14.75KB Part 03-Module 01-Lesson 04_Functions/02. Defining Functions.html | 14.76KB assets/css/fonts/KaTeX_SansSerif-Italic.woff2 | 14.86KB Part 06-Module 01-Lesson 12_Hypothesis Testing/13. Quiz Types of Errors - Part III.html | 15.05KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions Python.html | 15.06KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap Next Steps.html | 15.08KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html | 15.13KB Part 03-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html | 15.14KB Part 03-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html | 15.16KB Part 01-Module 03-Lesson 04_Portfolio Optimization/06. Formulating Portfolio Optimization Problems.html | 15.17KB Part 06-Module 01-Lesson 12_Hypothesis Testing/25. Quiz Connecting Errors and P-Values.html | 15.22KB Part 03-Module 01-Lesson 05_Scripting/img/step5-source.png | 15.24KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/11. PyTorch V2 Part 3 V1-9ILiZwbi9dA.en.vtt | 15.28KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/12. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.en.vtt | 15.36KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html | 15.50KB Part 03-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html | 15.50KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html | 15.52KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html | 15.61KB Part 06-Module 01-Lesson 12_Hypothesis Testing/15. Quiz More Hypothesis Testing Practice.html | 15.61KB assets/css/fonts/KaTeX_SansSerif-Bold.woff2 | 15.62KB Part 03-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html | 15.63KB Part 06-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png | 15.64KB Part 06-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html | 15.65KB Part 01-Module 04-Lesson 06_Alpha Factors/11. Ranking in Zipline.html | 15.76KB Part 03-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html | 15.77KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png | 15.80KB Part 07-Module 01-Lesson 04_Decision Trees/17. Decision Trees in sklearn.html | 15.86KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html | 15.87KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html | 15.87KB Part 03-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html | 15.99KB Part 06-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html | 16.01KB Part 06-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html | 16.24KB Part 05-Module 01-Lesson 02_NumPy/08. Slicing ndarrays.html | 16.25KB Part 03-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html | 16.29KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html | 16.39KB Part 03-Module 01-Lesson 05_Scripting/img/step2-pwd.png | 16.39KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html | 16.39KB assets/css/fonts/KaTeX_SansSerif-Regular.woff | 16.39KB Part 06-Module 01-Lesson 12_Hypothesis Testing/33. Quiz + Text Recap.html | 16.42KB Part 01-Module 01-Lesson 07_Stock Returns/04. Quiz Log Returns and Compounding.html | 16.46KB Part 03-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html | 16.48KB Part 06-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html | 16.50KB Part 03-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html | 16.59KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.pt-BR.vtt | 16.61KB Part 07-Module 01-Lesson 01_Linear Regression/15. Linear Regression in scikit-learn.html | 16.63KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/12. [Preview] Project Mimic Me!.html | 16.65KB Part 06-Module 01-Lesson 12_Hypothesis Testing/06. Quiz Setting Up Hypothesis Tests.html | 16.66KB Part 03-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html | 16.72KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.en.vtt | 16.82KB Part 03-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html | 16.85KB Part 05-Module 01-Lesson 02_NumPy/07. Accessing, Deleting, and Inserting Elements Into ndarrays.html | 16.94KB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html | 17.03KB assets/css/fonts/KaTeX_Typewriter-Regular.woff2 | 17.13KB Part 05-Module 01-Lesson 02_NumPy/11. Arithmetic operations and Broadcasting.html | 17.27KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html | 17.39KB Part 06-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html | 17.64KB assets/css/fonts/KaTeX_SansSerif-Italic.woff | 17.70KB Part 06-Module 01-Lesson 12_Hypothesis Testing/31. Notebook + Quiz Other Things to Consider.html | 17.85KB Part 03-Module 01-Lesson 05_Scripting/img/step4-alias.png | 17.86KB Part 06-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html | 17.90KB Part 05-Module 01-Lesson 02_NumPy/04. Creating and Saving NumPy ndarrays.html | 17.99KB assets/css/fonts/KaTeX_Caligraphic-Regular.ttf | 18.52KB assets/css/fonts/KaTeX_SansSerif-Bold.woff | 18.72KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-02-21-at-6.41.35-pm.png | 18.77KB assets/css/fonts/KaTeX_Caligraphic-Bold.ttf | 19.13KB Part 06-Module 01-Lesson 12_Hypothesis Testing/18. Notebook + Quiz Simulating from the Null.html | 19.14KB assets/css/fonts/KaTeX_Fraktur-Regular.woff2 | 19.39KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html | 19.42KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html | 19.42KB assets/css/fonts/KaTeX_Math-BoldItalic.woff2 | 19.57KB Part 01-Module 01-Lesson 08_Momentum Trading/img/momentum-quiz.jpeg | 19.76KB assets/css/fonts/KaTeX_Math-Italic.woff2 | 19.95KB assets/css/fonts/KaTeX_Fraktur-Bold.woff2 | 20.01KB assets/css/fonts/KaTeX_Typewriter-Regular.woff | 20.43KB Part 03-Module 01-Lesson 05_Scripting/img/step3-path.png | 20.76KB Part 06-Module 01-Lesson 12_Hypothesis Testing/30. Notebook + Quiz Other Things to Consider.html | 20.94KB Part 05-Module 01-Lesson 03_Pandas/08. Creating Pandas DataFrames.html | 21.49KB assets/css/katex.min.css | 21.56KB Part 06-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part II(b).html | 21.63KB assets/css/fonts/KaTeX_Main-BoldItalic.woff2 | 21.67KB assets/css/fonts/KaTeX_Fraktur-Regular.woff | 22.31KB assets/css/fonts/KaTeX_Main-Italic.woff2 | 22.52KB assets/css/fonts/KaTeX_Math-BoldItalic.woff | 22.65KB assets/css/fonts/KaTeX_Fraktur-Bold.woff | 22.84KB assets/css/fonts/KaTeX_Math-Italic.woff | 23.26KB Part 01-Module 02-Lesson 05_Volatility/05. Quiz Volatility.html | 23.33KB Part 07-Module 01-Lesson 01_Linear Regression/img/quadraticlinearregression.png | 23.56KB assets/css/plyr.css | 23.62KB assets/css/fonts/KaTeX_Script-Regular.ttf | 24.28KB Part 01-Module 01-Lesson 07_Stock Returns/img/numerical-stability-example.jpg | 25.10KB assets/css/fonts/KaTeX_Main-BoldItalic.woff | 25.61KB Part 07-Module 01-Lesson 01_Linear Regression/img/just-a-simple-lin-reg.png | 25.95KB assets/css/fonts/KaTeX_Main-Italic.woff | 26.56KB Part 04-Module 01-Lesson 01_Introduction/img/img-4646.jpg | 27.12KB Part 07-Module 01-Lesson 01_Linear Regression/img/lin-reg-w-outliers.png | 27.55KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.27.58-pm.png | 27.77KB Part 05-Module 01-Lesson 02_NumPy/05. Using Built-in Functions to Create ndarrays.html | 28.25KB Part 07-Module 01-Lesson 01_Linear Regression/img/lin-reg-no-outliers.png | 28.61KB Part 05-Module 01-Lesson 03_Pandas/09. Accessing Elements in Pandas DataFrames.html | 29.43KB assets/css/fonts/KaTeX_SansSerif-Regular.ttf | 29.45KB assets/css/fonts/KaTeX_Main-Bold.woff2 | 29.90KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-components.png | 30.25KB assets/css/fonts/KaTeX_SansSerif-Italic.ttf | 30.57KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.44.34-pm.png | 30.76KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2018-07-27-at-1.24.38-pm.png | 30.85KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.11.09-pm.png | 32.06KB assets/css/fonts/KaTeX_Main-Regular.woff2 | 32.09KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.15.59-pm.png | 32.15KB assets/css/fonts/KaTeX_AMS-Regular.woff2 | 32.43KB Part 05-Module 01-Lesson 03_Pandas/10. Dealing with NaN.html | 32.94KB assets/css/fonts/KaTeX_SansSerif-Bold.ttf | 33.23KB assets/css/fonts/KaTeX_Fraktur-Regular.ttf | 33.84KB assets/css/fonts/KaTeX_Fraktur-Bold.ttf | 35.13KB Part 05-Module 01-Lesson 03_Pandas/12. Loading Data into a Pandas DataFrame.html | 35.19KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png | 35.31KB assets/css/fonts/KaTeX_Typewriter-Regular.ttf | 35.46KB assets/css/fonts/KaTeX_Main-Bold.woff | 35.89KB Part 01-Module 02-Lesson 05_Volatility/09. Quiz Estimate Volatility.html | 38.19KB assets/css/fonts/KaTeX_Main-Regular.woff | 38.52KB assets/css/fonts/KaTeX_Math-BoldItalic.ttf | 38.81KB assets/css/fonts/KaTeX_AMS-Regular.woff | 39.26KB Part 01-Module 01-Lesson 07_Stock Returns/img/aapl-adj-close.jpeg | 39.91KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/conda-environments.png | 40.09KB assets/css/fonts/KaTeX_Math-Italic.ttf | 40.48KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.26.22-pm.png | 41.24KB Part 01-Module 03-Lesson 04_Portfolio Optimization/img/cvxpy-visual.jpeg | 41.38KB assets/css/jquery.mCustomScrollbar.min.css | 41.83KB Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-10.49.16-am.png | 42.36KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.48.02-pm.png | 43.35KB Part 03-Module 01-Lesson 05_Scripting/img/step6-testrun.png | 43.44KB assets/css/fonts/KaTeX_Main-BoldItalic.ttf | 43.77KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.21.42-pm.png | 44.22KB assets/js/jquery.mCustomScrollbar.concat.min.js | 44.41KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.16.45-pm.png | 44.43KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-10.16.48-pm.png | 44.48KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.31.41-pm.png | 44.91KB Part 01-Module 03-Lesson 04_Portfolio Optimization/img/pythagorean-theroem.jpeg | 45.72KB assets/css/fonts/KaTeX_Main-Italic.ttf | 46.83KB Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png | 47.51KB Part 06-Module 01-Lesson 04_Probability/img/48738115.gif | 47.54KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif | 47.62KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.09.18-pm.png | 47.72KB Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-03-21-at-2.40.42-pm.png | 48.54KB assets/js/bootstrap.min.js | 49.85KB Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-8.13.20-pm.png | 50.77KB Part 01-Module 03-Lesson 04_Portfolio Optimization/img/l2-norm.jpeg | 51.34KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-10.47.52-am.png | 51.49KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.34.00-pm.png | 52.35KB Part 06-Module 01-Lesson 04_Probability/img/48741099.gif | 52.38KB Part 06-Module 01-Lesson 04_Probability/img/48667981.gif | 52.53KB Part 06-Module 01-Lesson 04_Probability/img/48698595.gif | 53.00KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/slides-choose-slide-type.png | 53.31KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif | 54.43KB Part 06-Module 01-Lesson 04_Probability/img/48699581.gif | 55.22KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48720246.gif | 55.25KB Part 01-Module 03-Lesson 04_Portfolio Optimization/img/two-asset-variance.jpeg | 55.78KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif | 56.01KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-timeit2.png | 56.11KB Part 01-Module 03-Lesson 04_Portfolio Optimization/img/cvxpy-example.jpeg | 56.26KB Part 06-Module 01-Lesson 04_Probability/img/48742066.gif | 56.40KB Part 06-Module 01-Lesson 04_Probability/img/48684742.gif | 57.16KB Part 06-Module 01-Lesson 04_Probability/img/48687795.gif | 57.33KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif | 57.96KB Part 06-Module 01-Lesson 04_Probability/img/48688828.gif | 57.96KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-06-at-2.48.40-pm.png | 58.05KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif | 58.13KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif | 58.29KB Part 01-Module 02-Lesson 03_Regression/img/screen-shot-2018-04-20-at-3.04.04-pm.png | 58.47KB Part 06-Module 01-Lesson 04_Probability/img/48693692.gif | 58.52KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif | 58.62KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48292975.gif | 58.78KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48716288.gif | 59.35KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/cezanne-head.jpg | 59.53KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif | 59.53KB assets/css/fonts/KaTeX_Main-Bold.ttf | 60.27KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48230509.gif | 60.32KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48632846.gif | 60.60KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif | 61.08KB Part 06-Module 01-Lesson 04_Probability/img/48698583.gif | 61.09KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/slides-cell-toolbar-menu.png | 61.36KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-shutdown.png | 62.35KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif | 62.80KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png | 63.17KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/points.png | 63.17KB Part 06-Module 01-Lesson 04_Probability/img/48695597.gif | 63.29KB Part 04-Module 01-Lesson 01_Introduction/img/cp1a9390.jpg | 63.65KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif | 63.85KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.28.20-pm.png | 65.29KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.49.47-am.png | 65.43KB Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.30.27-pm.png | 66.38KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.11.07-pm.png | 66.87KB Part 07-Module 01-Lesson 02_Naive Bayes/img/spam.png | 67.76KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif | 68.34KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48734186.gif | 68.36KB assets/css/fonts/KaTeX_Main-Regular.ttf | 68.43KB Part 07-Module 01-Lesson 01_Linear Regression/img/just-a-2d-reg.png | 68.49KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-pdb.png | 68.61KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif | 68.86KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48480558.gif | 69.36KB assets/css/fonts/KaTeX_AMS-Regular.ttf | 69.75KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png | 70.26KB Part 06-Module 01-Lesson 04_Probability/img/48667979.gif | 70.38KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif | 70.63KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif | 70.66KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48609553.gif | 70.70KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48629196.gif | 70.92KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif | 71.26KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.34.30-pm.png | 71.37KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif | 71.37KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48296523.gif | 71.75KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif | 71.92KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif | 72.67KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48652467.gif | 72.79KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/nbconvert-example.png | 73.30KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif | 73.58KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif | 73.74KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48709280.gif | 73.94KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif | 74.24KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48241000.gif | 74.71KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.30.49-pm.png | 75.09KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48686674.gif | 75.75KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-06-at-2.30.04-pm.png | 75.93KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48737119.gif | 77.14KB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png | 77.21KB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/img/var-diagram.jpg | 77.34KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif | 77.74KB Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png | 78.33KB Part 06-Module 01-Lesson 04_Probability/img/48750031.gif | 78.60KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48230510.gif | 79.18KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-download.png | 79.54KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48632848.gif | 79.80KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif | 80.19KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48311831.gif | 80.33KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48240998.gif | 80.60KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48704300.gif | 80.67KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48011955.gif | 81.89KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48198838.gif | 82.00KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif | 82.00KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif | 82.16KB Part 06-Module 01-Lesson 04_Probability/img/48752009.gif | 82.38KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif | 82.40KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.34.18-pm.png | 82.52KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48198839.gif | 82.81KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48311832.gif | 82.90KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48641639.gif | 83.13KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48445276.gif | 83.24KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.12.27-pm.png | 83.39KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48646780.gif | 83.92KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48739228.gif | 83.99KB Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png | 84.00KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.51.35-am.png | 84.25KB Part 06-Module 01-Lesson 04_Probability/img/48667978.gif | 84.52KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48726280.gif | 84.66KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48716290.gif | 84.79KB assets/js/jquery-3.3.1.min.js | 84.89KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48480561.gif | 85.92KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48271966.gif | 86.74KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48743074.gif | 87.07KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48310768.gif | 87.65KB Part 02-Module 02-Lesson 04_Training Neural Networks/img/regularization-quiz.png | 87.90KB Part 06-Module 01-Lesson 07_Bayes Rule/img/48240997.gif | 88.58KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif | 89.16KB Part 01-Module 01-Lesson 07_Stock Returns/img/aapl-returns-log-returns.jpeg | 90.07KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif | 90.54KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.28.03-pm.png | 90.71KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-matplotlib.png | 90.72KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48734324.gif | 90.86KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif | 90.98KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif | 91.62KB Part 07-Module 01-Lesson 04_Decision Trees/img/student-data.png | 91.85KB Part 06-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif | 92.14KB Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-11.30.13-am.png | 92.79KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.55.55-pm.png | 93.60KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png | 93.69KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png | 93.69KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png | 94.14KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png | 94.14KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-json.png | 95.29KB Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png | 95.46KB Part 06-Module 01-Lesson 06_Conditional Probability/img/48271967.gif | 96.13KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-04-02-at-4.25.41-pm.png | 97.56KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/waffle.png | 98.30KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.48.34-pm.png | 99.98KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.23.22-pm.png | 99.99KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/new-notebook.png | 101.77KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-3.59.39-pm.png | 102.91KB Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.27.30-pm.png | 102.98KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-server.png | 103.33KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.05.55-pm.png | 104.63KB Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.29.38-pm.png | 104.85KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.37.50-pm.png | 105.28KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.20.49-pm.png | 106.27KB Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png | 108.23KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/conda-tab.png | 109.92KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.06.03-pm.png | 109.97KB Part 01-Module 02-Lesson 03_Regression/img/distributions.png | 110.42KB Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.38.47-pm.png | 110.58KB Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.41.01-pm.png | 110.70KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.04.18-pm.png | 111.86KB Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-2.27.07-pm.png | 113.18KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.15.46-pm.png | 113.47KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.57.42-pm.png | 114.23KB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-6.07.26-pm.png | 117.44KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.36.06-pm.png | 119.81KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2018-10-15-at-8.35.15-pm.png | 119.96KB Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png | 120.26KB Part 07-Module 01-Lesson 03_Clustering/img/3058428551.gif | 124.68KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.27.07-pm.png | 124.97KB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.03.59-pm.png | 125.31KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.58.00-pm.png | 126.03KB assets/js/plyr.polyfilled.min.js | 126.16KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.47.08-pm.png | 126.78KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.37.05-pm.png | 126.82KB Part 07-Module 01-Lesson 02_Naive Bayes/img/spamham.png | 135.09KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-5.00.26-pm.png | 135.65KB Part 07-Module 01-Lesson 01_Linear Regression/img/minibatch.png | 136.77KB assets/css/bootstrap.min.css | 137.64KB Part 07-Module 01-Lesson 04_Decision Trees/img/recommending-apps.png | 140.56KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.28.21-pm.png | 140.95KB Part 01-Module 02-Lesson 03_Regression/img/screen-shot-2018-04-19-at-1.17.37-pm.png | 142.44KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.42.15-pm.png | 145.49KB Part 07-Module 01-Lesson 03_Clustering/img/3040398570.gif | 148.74KB Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png | 150.98KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.32.19-pm.png | 152.53KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-05-at-11.33.57-am.png | 153.88KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/server-shutdown.png | 155.42KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/m4l2a-01-image-v1.png | 157.09KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-timeit.png | 157.29KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.51.35-pm.png | 157.69KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.48.16-pm.png | 157.95KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.29.49-pm.png | 160.71KB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/img/08-identify-pairs-to-trade.png | 162.42KB Part 07-Module 01-Lesson 03_Clustering/img/3004978616.gif | 164.57KB Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-11.08.44-pm.png | 164.90KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/command+palette.mp4 | 169.16KB Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png | 170.85KB Part 07-Module 01-Lesson 03_Clustering/img/3034378634.gif | 173.12KB Part 07-Module 01-Lesson 01_Linear Regression/img/quiz.jpg | 174.18KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png | 179.99KB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/img/mat-headshot.png | 179.99KB Part 07-Module 01-Lesson 03_Clustering/img/3056738546.gif | 183.68KB Part 07-Module 01-Lesson 04_Decision Trees/img/table.png | 192.08KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.37.30-pm.png | 192.09KB Part 07-Module 01-Lesson 03_Clustering/img/3050028596.gif | 192.14KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.59.42-pm.png | 192.43KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-13-at-12.36.54-pm.png | 193.00KB Part 07-Module 01-Lesson 01_Linear Regression/img/batch-stochastic.png | 196.92KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.51.18-pm.png | 198.22KB Part 07-Module 01-Lesson 03_Clustering/img/3081768538.gif | 202.88KB Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-3.13.49-pm.png | 204.57KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/meme.png | 209.05KB Part 07-Module 01-Lesson 04_Decision Trees/img/meme.png | 209.05KB Part 07-Module 01-Lesson 02_Naive Bayes/img/meme.png | 209.05KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png | 209.05KB Part 07-Module 01-Lesson 03_Clustering/img/meme.png | 209.05KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/meme.png | 209.05KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/stop-sign-classification.png | 211.50KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png | 214.95KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/xor.png | 214.95KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/notebook+interface.mp4 | 215.47KB Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-3.04.01-pm.png | 217.46KB Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4 | 218.29KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.24.21-pm.png | 218.72KB Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4 | 220.29KB Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png | 220.32KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.55.40-pm.png | 222.17KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image8.png | 228.06KB Part 07-Module 01-Lesson 03_Clustering/img/2956218691.gif | 229.48KB assets/js/katex.min.js | 231.26KB Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.34-pm.png | 238.98KB Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.35.49-pm.png | 255.40KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 | 260.01KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 | 260.01KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png | 265.78KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/and-quiz.png | 265.78KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif | 267.40KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.05.48-pm.png | 279.73KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2018-08-20-at-4.07.31-pm.png | 282.00KB index.html | 283.60KB Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4 | 284.83KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.05.20-pm.png | 289.67KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif | 291.24KB Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png | 295.89KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-09-10-at-7.38.39-pm.png | 296.26KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-09-10-at-7.38.39-pm.png | 296.26KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-09-at-6.28.07-pm.png | 299.96KB Part 07-Module 01-Lesson 04_Decision Trees/img/trees.png | 300.00KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.12.46-pm.png | 305.85KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif | 309.25KB Part 03-Module 01-Lesson 05_Scripting/img/generate-messages-output.png | 310.53KB Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4 | 312.59KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.51.08-pm.png | 313.39KB Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png | 314.45KB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/dancing-beemo.gif | 318.16KB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4 | 323.09KB Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.05.49-pm.png | 323.90KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/Markdown+cells.mp4 | 330.36KB Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4 | 339.25KB Part 05-Module 01-Lesson 03_Pandas/img/screen-shot-2018-03-19-at-3.21.24-pm.png | 339.90KB Part 05-Module 01-Lesson 02_NumPy/img/screen-shot-2018-03-19-at-3.21.24-pm.png | 339.90KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.22.39-pm.png | 346.74KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.45.03-pm.png | 351.54KB Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.14.23-pm.png | 358.59KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-10.23.07-pm.png | 366.06KB Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.50-pm.png | 375.54KB Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.40.03-pm.png | 389.40KB Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4 | 390.91KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/or-quiz.png | 393.62KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png | 393.62KB Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4 | 394.99KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.14.19-pm.png | 395.38KB Part 07-Module 01-Lesson 03_Clustering/img/3013998667.gif | 404.61KB Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4 | 423.73KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image4.png | 436.47KB Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png | 442.46KB Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4 | 447.99KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.mp4 | 451.32KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-4.03.20-pm.png | 451.90KB assets/img/udacimak.png | 461.07KB Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4 | 467.38KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png | 471.61KB Part 02-Module 02-Lesson 04_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png | 471.61KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png | 471.61KB Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4 | 473.30KB Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4 | 479.60KB Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4 | 484.71KB Part 07-Module 01-Lesson 01_Linear Regression/img/house.png | 491.52KB Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4 | 506.06KB Part 03-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png | 507.42KB Part 05-Module 01-Lesson 03_Pandas/img/screen-shot-2018-03-19-at-2.30.59-pm.png | 507.42KB Part 05-Module 01-Lesson 02_NumPy/img/screen-shot-2018-03-19-at-2.30.59-pm.png | 507.42KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4 | 511.79KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4 | 511.79KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4 | 519.05KB Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-11-19-at-11.32.05-am.png | 521.11KB Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4 | 523.00KB Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4 | 528.90KB Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.59.16-pm.png | 529.19KB title.png | 535.41KB Part 04-Module 01-Lesson 01_Introduction/img/grant.png | 569.90KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.mp4 | 574.57KB Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4 | 603.29KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png | 606.14KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/and-to-or.png | 606.14KB Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4 | 639.69KB Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4 | 650.53KB Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4 | 660.25KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4 | 661.10KB Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4 | 663.40KB Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4 | 671.97KB Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4 | 672.27KB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.mp4 | 676.91KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.mp4 | 677.46KB Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 | 692.80KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.10.20-pm.png | 716.56KB Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4 | 719.39KB Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4 | 747.17KB Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4 | 747.61KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png | 748.98KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/student-quiz.png | 748.98KB Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4 | 751.89KB Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4 | 753.05KB Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4 | 754.47KB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/get-hired-with-the-udacity-career-portal.gif | 756.73KB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.mp4 | 768.11KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4 | 771.83KB Part 07-Module 01-Lesson 03_Clustering/img/sebastian-katie-jay.png | 779.77KB Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.mp4 | 782.02KB Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4 | 797.83KB Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4 | 803.67KB Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.mp4 | 803.69KB Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4 | 805.43KB Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4 | 819.86KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.20.52-pm.png | 821.42KB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4 | 824.92KB Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4 | 831.76KB Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png | 832.02KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4 | 863.99KB Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 | 873.14KB Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png | 882.60KB Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4 | 893.30KB Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4 | 920.84KB Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4 | 927.05KB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4 | 954.56KB Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.mp4 | 977.95KB Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4 | 978.72KB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.25.16-pm.png | 979.06KB Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.mp4 | 981.31KB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4 | 982.27KB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4 | 982.27KB Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4 | 982.28KB Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4 | 990.87KB Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.mp4 | 991.73KB Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4 | 1001.40KB Part 06-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif | 1011.65KB Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4 | 1.01MB Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4 | 1.01MB Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4 | 1.03MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.mp4 | 1.04MB Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4 | 1.04MB Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4 | 1.06MB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.mp4 | 1.06MB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4 | 1.06MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.mp4 | 1.07MB Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.mp4 | 1.08MB Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4 | 1.08MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4 | 1.10MB Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4 | 1.12MB Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.mp4 | 1.12MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4 | 1.13MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4 | 1.13MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4 | 1.13MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4 | 1.13MB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.mp4 | 1.14MB Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.mp4 | 1.17MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.mp4 | 1.19MB Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.mp4 | 1.19MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.mp4 | 1.20MB Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4 | 1.21MB Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4 | 1.21MB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4 | 1.21MB Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.mp4 | 1.22MB Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4 | 1.22MB Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4 | 1.24MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4 | 1.27MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4 | 1.27MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.18.10-pm.png | 1.27MB Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 | 1.28MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 | 1.28MB Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4 | 1.28MB Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4 | 1.29MB Part 01-Module 02-Lesson 02_Outliers and Filtering/10. M2L2 09 Outro V1-r1SWu-7Rzf0.mp4 | 1.29MB Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4 | 1.32MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4 | 1.33MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4 | 1.33MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. M4 L2A 15 Time Series Risk Model V2-Lz3RMLmov8o.mp4 | 1.34MB Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.mp4 | 1.34MB Part 01-Module 02-Lesson 04_Time Series Modeling/09. M2L4 11 Outro V1-6sheR92KUU8.mp4 | 1.35MB Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4 | 1.35MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.mp4 | 1.37MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. L1 26 Expense Ratios V2-SHZ0AhJq134.mp4 | 1.37MB Part 01-Module 03-Lesson 02_ETFs/07. L2 09 Redeeming Shares V3-ZSVgU7DBarc.mp4 | 1.38MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-shocked.png | 1.38MB Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.mp4 | 1.38MB Part 01-Module 02-Lesson 03_Regression/14. M2L3 12 Multivariate Linear Regression V3-WbCGVF7SAN0.mp4 | 1.39MB Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4 | 1.41MB Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4 | 1.42MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. M2L6 11 Clustering Stocks V3-LkgCK_qPqWE.mp4 | 1.44MB Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4 | 1.44MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4 | 1.46MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4 | 1.46MB Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 | 1.48MB Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4 | 1.48MB Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4 | 1.49MB Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4 | 1.49MB Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4 | 1.49MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 | 1.49MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 | 1.49MB Part 01-Module 02-Lesson 01_Quant Workflow/03. M2L1 02 Quant Workflow V3-lZfCCRv2rEE.mp4 | 1.50MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 | 1.50MB Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4 | 1.51MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.mp4 | 1.52MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04 Study Groups V1-vmjk1EKR6mM.mp4 | 1.53MB Part 01-Module 04-Lesson 01_Factors/10. M4 L1A 09 Overview For Standardizing A Factor V3-0clT0lnrTrU.mp4 | 1.54MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 28 Open End Mutual Funds Handling Withdrawals V2-46NGAQHY-Mc.mp4 | 1.55MB Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.48.22-pm.png | 1.57MB Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4 | 1.57MB Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.mp4 | 1.57MB Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4 | 1.58MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.mp4 | 1.58MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-features.png | 1.58MB Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.mp4 | 1.58MB Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4 | 1.59MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4 | 1.60MB Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4 | 1.60MB Part 01-Module 02-Lesson 05_Volatility/14. M2L5 15 Outro V1-FMXL37CkTgg.mp4 | 1.60MB Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.mp4 | 1.61MB Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4 | 1.61MB Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4 | 1.61MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4 | 1.62MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4 | 1.62MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-emoji.png | 1.62MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4 | 1.62MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.09.53-pm.png | 1.62MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-results.png | 1.62MB Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4 | 1.65MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4 | 1.65MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4 | 1.65MB Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4 | 1.68MB Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4 | 1.69MB Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4 | 1.69MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4 | 1.69MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.mp4 | 1.71MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 | 1.72MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 | 1.72MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4 | 1.73MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4 | 1.73MB Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4 | 1.73MB Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4 | 1.73MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4 | 1.74MB Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4 | 1.74MB Part 01-Module 03-Lesson 02_ETFs/10. L2 13 Realigning ETF Share Prices V2-aRXJxjQQSiI.mp4 | 1.74MB Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.mp4 | 1.77MB Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4 | 1.78MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4 | 1.79MB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.mp4 | 1.80MB Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4 | 1.80MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4 | 1.82MB Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.mp4 | 1.83MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. M4 L2A 22 Cross Sectional Risk Model A Different Approach V2-LauZ7h4bgKE.mp4 | 1.84MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04a Knowledge V1-lX_is8cq0Bg.mp4 | 1.84MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.mp4 | 1.84MB Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4 | 1.86MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4 | 1.86MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4 | 1.86MB Part 01-Module 04-Lesson 03_Risk Factor Models/11. M4 L2A 07 Taking Constants Out Of Variance And Covariance Optional V3-M9R9870m_o0.mp4 | 1.87MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4 | 1.88MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4 | 1.88MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4 | 1.88MB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4 | 1.90MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. L1 09 Price Weighting V2-2SFbwJ19NhA.mp4 | 1.91MB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4 | 1.91MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. M4 L2b 11 Writing It Down Pt 4 V3-7XO-syqIpCE.mp4 | 1.92MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 23 Absolute Returns V3-wbb6WSyXLdU.mp4 | 1.92MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4 | 1.92MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4 | 1.92MB Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4 | 1.93MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4 | 1.95MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4 | 1.95MB Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.mp4 | 1.96MB Part 01-Module 01-Lesson 05_Market Mechanics/11. M1L3 15 Outro V2-XVvfToYCsmo.mp4 | 1.96MB Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4 | 1.96MB Part 01-Module 04-Lesson 03_Risk Factor Models/13. M4 L2A 09 Variance Of 2 Stocks Part 2 V4-tSMutw0f6OE.mp4 | 1.96MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. M4 L2b 19 Outro V1-nfVnAkndJCY.mp4 | 1.97MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. M1L1 02 Interview W Jonathan V1-AeranuDRL7k.mp4 | 1.98MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 | 1.98MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 | 1.98MB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.mp4 | 1.99MB Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4 | 2.00MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4 | 2.00MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. M4 L3b 06 Winners And Losers In Momentum Investing V2-84ygzbLENbE.mp4 | 2.01MB Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4 | 2.03MB Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4 | 2.04MB Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.mp4 | 2.05MB Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4 | 2.05MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. L1 25 Net Asset Value V2-hBnY2DmEFo4.mp4 | 2.06MB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4 | 2.07MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4 | 2.07MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4 | 2.07MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4 | 2.07MB Part 01-Module 02-Lesson 02_Outliers and Filtering/09. M2L2 08 Generating Robust Trading Signals V3-1ikkZmVkjl0.mp4 | 2.07MB Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4 | 2.08MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4 | 2.08MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4 | 2.08MB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4 | 2.08MB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4 | 2.08MB Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4 | 2.09MB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4 | 2.10MB Part 01-Module 02-Lesson 03_Regression/17. M2L3 15 Summary V1-n2VxcEcw0GY.mp4 | 2.11MB Part 01-Module 02-Lesson 02_Outliers and Filtering/01. M2L2 01 Intro V1-OGx1aYHMgbs.mp4 | 2.12MB Part 01-Module 01-Lesson 06_Data Processing/01. M1L4 01 Stock Data V2-sN0_IqmMGGA.mp4 | 2.12MB Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4 | 2.13MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.mp4 | 2.14MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. M4 L2A 25 Specific Variance V2-JwA9g3NBglE.mp4 | 2.14MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4 | 2.14MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4 | 2.14MB Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4 | 2.14MB Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.mp4 | 2.14MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.mp4 | 2.14MB Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4 | 2.14MB Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4 | 2.15MB Part 01-Module 02-Lesson 03_Regression/09. M2L3 08 Heteroskedasticity V2-wias9OZ1tU4.mp4 | 2.15MB Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.mp4 | 2.15MB Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4 | 2.16MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. M4 L2A 13 Time Series Risk Model Factor Exposure V4-WPBSMptBrfw.mp4 | 2.16MB Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4 | 2.16MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. M4 L2A 14 Time Series Risk Model Specific Variance V2-I0uJLfh_OgQ.mp4 | 2.16MB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4 | 2.17MB Part 01-Module 03-Lesson 04_Portfolio Optimization/01. L4 01 Intro V1-CtIcmmR0YTs.mp4 | 2.17MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4 | 2.19MB Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 01 Intro V2-mE8OOxkgzy8.mp4 | 2.20MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4 | 2.20MB Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4 | 2.21MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4 | 2.21MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.mp4 | 2.22MB Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4 | 2.23MB Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4 | 2.25MB Part 01-Module 01-Lesson 05_Market Mechanics/04. M1L3 04 Liquidity V4-KNVQeH6Y_YA.mp4 | 2.25MB Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4 | 2.26MB Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.mp4 | 2.26MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4 | 2.26MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4 | 2.26MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. L3 03 Portfolio Mean V3-vozlctvug7I.mp4 | 2.27MB Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4 | 2.29MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.mp4 | 2.29MB Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4 | 2.30MB Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4 | 2.31MB Part 01-Module 01-Lesson 05_Market Mechanics/06. M1L3 09 Open High Low Close V4-FgNY4YgVWFk.mp4 | 2.35MB Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4 | 2.36MB Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4 | 2.36MB Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.mp4 | 2.37MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. M4 L2b 13 Principal Components V3-XtecKk58CLs.mp4 | 2.38MB Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4 | 2.43MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. L3 13 Summary V1-I7XKJf8t_0s.mp4 | 2.46MB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4 | 2.48MB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4 | 2.49MB Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4 | 2.50MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04b Project Reviews V1-KJbx9f9VKJE.mp4 | 2.50MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. M4 L2b 10 Writing It Down Pt 3 V3-kSl0j4QIMIU.mp4 | 2.51MB Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4 | 2.51MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4 | 2.52MB Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.mp4 | 2.52MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.mp4 | 2.53MB Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4 | 2.54MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4 | 2.54MB Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4 | 2.55MB Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4 | 2.56MB Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4 | 2.57MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4 | 2.57MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4 | 2.59MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4 | 2.59MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4 | 2.61MB Part 01-Module 03-Lesson 04_Portfolio Optimization/13. L4 14 Recap V1-e3qJYCQfJD0.mp4 | 2.61MB Part 01-Module 04-Lesson 03_Risk Factor Models/03. M4 L2A 02 Motivation For Risk Factor Model V2-jAQRjxK8PyQ.mp4 | 2.62MB Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4 | 2.62MB Part 01-Module 02-Lesson 05_Volatility/13. M2L5 13 Breakout Strategies V4-9eamk40DMu0.mp4 | 2.63MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. M4 L2b 05 Translating Between Bases V4-lrE4VOJ2RCA.mp4 | 2.63MB Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4 | 2.63MB Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.mp4 | 2.65MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4 | 2.67MB Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4 | 2.69MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. M4 L2A 19 Fama French SMB And HML V2-fnncnimScFc.mp4 | 2.71MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.mp4 | 2.71MB Part 01-Module 04-Lesson 03_Risk Factor Models/08. M4 L2A 05 Covariance Matrix Of Factors V3-llA1A0vjSuI.mp4 | 2.72MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4 | 2.73MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4 | 2.73MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4 | 2.73MB Part 01-Module 01-Lesson 06_Data Processing/02. M1L4 02 Market Data V5-9aEp374GsgQ.mp4 | 2.73MB Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.mp4 | 2.75MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4 | 2.75MB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4 | 2.75MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. M4 L3b 15 IVol Arbitrage And Efficient Pricing Of Stocks V3-7Fqe5DP6iG8.mp4 | 2.75MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. M4 L2A 18 Fama French Value Factor V4-IcbsQ4QRGbs.mp4 | 2.76MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. M4 L2b 09 Writing It Down Pt 2 V2-TSH3hTAHsIg.mp4 | 2.77MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/18. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.mp4 | 2.78MB Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4 | 2.78MB Part 01-Module 01-Lesson 05_Market Mechanics/10. M1L3 14 Markets In Different Timezones V3-wmmEpPM-HVs.mp4 | 2.78MB Part 01-Module 02-Lesson 04_Time Series Modeling/07. M2L4 08 Particle Filter V4-4KhDUAvwI74.mp4 | 2.79MB Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.mp4 | 2.79MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.mp4 | 2.79MB Part 01-Module 01-Lesson 05_Market Mechanics/09. M1L3 12 Gaps In Market Data V3-jMT3VbUGiZI.mp4 | 2.80MB Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4 | 2.81MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4 | 2.81MB Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.mp4 | 2.82MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. M4 L3b 21 IVol Generalizing The Volatility Factor V2-Lt1JPjKHPmk.mp4 | 2.83MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 | 2.83MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 | 2.83MB Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4 | 2.84MB Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4 | 2.84MB Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4 | 2.85MB Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4 | 2.85MB Part 01-Module 01-Lesson 08_Momentum Trading/04. M1L6 04 Long And Short Positions V3-TCOFgM-hxkQ.mp4 | 2.87MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 | 2.87MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 | 2.87MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.mp4 | 2.88MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4 | 2.88MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. L3 06 The Covariance Matrix And Quadratic Forms V1-as5lafBZ2CA.mp4 | 2.88MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4 | 2.88MB Part 01-Module 03-Lesson 02_ETFs/03. L2 04 Commodity ETFs V2-UpgX6INJ6nU.mp4 | 2.89MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. M4 L3b 13 Skewness And Momentum Conditional Factor V2-cMLTVZFKEm0.mp4 | 2.90MB Part 01-Module 04-Lesson 06_Alpha Factors/42. M4 L3a 182 Quantile Analysis Part 2 V3-NF18kx0sfBE.mp4 | 2.91MB Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4 | 2.91MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. M4 L2A 23 Categorical Factors V2-F76juAxHVIk.mp4 | 2.92MB Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4 | 2.92MB Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4 | 2.95MB Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.mp4 | 2.96MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.mp4 | 2.96MB Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4 | 2.96MB Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4 | 2.98MB Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.mp4 | 2.98MB Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4 | 3.00MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. L1 20 Mutual Funds V2-LgaylDkS92Y.mp4 | 3.01MB Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4 | 3.01MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4 | 3.02MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4 | 3.02MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4 | 3.03MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. M4 L3b 16 IVol Arbitrage Risk V3-rKtJ3iAYYns.mp4 | 3.03MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.mp4 | 3.04MB Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.mp4 | 3.07MB Part 01-Module 01-Lesson 05_Market Mechanics/05. M1L3 08 Tick Data V4-2O0eSKmI6YQ.mp4 | 3.08MB Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4 | 3.11MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4 | 3.11MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4 | 3.11MB Part 01-Module 04-Lesson 06_Alpha Factors/16. M4 L3a 09 Smoothing V2-mAfrjpZOf7Q.mp4 | 3.11MB Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.mp4 | 3.13MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. L1 21 Hedge Funds V4-AgGPqvDFTHw.mp4 | 3.15MB Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4 | 3.15MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4 | 3.17MB Part 01-Module 03-Lesson 02_ETFs/11. L2 14 Summary V1-E5br2PiH8kY.mp4 | 3.20MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 | 3.20MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 | 3.20MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. M4 L2b 16 PCA As A Factor Model Pt 2 V2-sDbmO0kHx9A.mp4 | 3.21MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. M4 L1B 22 Alternative Data V1-p6NxGZnkrdc.mp4 | 3.22MB Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.mp4 | 3.22MB Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.mp4 | 3.22MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4 | 3.23MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4 | 3.24MB Part 01-Module 01-Lesson 04_Stock Prices/01. M1L2 01 Stocks V6-23sv5ey0ySs.mp4 | 3.26MB Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.mp4 | 3.28MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 01 Intro In The First Five V1-magg5AVJRVA.mp4 | 3.31MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 | 3.31MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 | 3.31MB Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4 | 3.32MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.mp4 | 3.32MB Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.mp4 | 3.34MB Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4 | 3.35MB Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 1 V5-cnJK8c2zfq4.mp4 | 3.35MB Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4 | 3.36MB Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4 | 3.36MB Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4 | 3.37MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. L1 06 Growth Vs Value V2-ZCjre5YTD0s.mp4 | 3.37MB Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4 | 3.39MB Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.mp4 | 3.39MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.mp4 | 3.39MB Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4 | 3.41MB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4 | 3.42MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.mp4 | 3.42MB Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.mp4 | 3.44MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. M4 L4 01 Intro V1-9NzZFszX2E4.mp4 | 3.44MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. M4 L1B 26 Summary V1-yuLQA24Thms.mp4 | 3.44MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. M4 L2A 26 Fundamental Factors V2-fndhL2Tolac.mp4 | 3.45MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.mp4 | 3.47MB Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.mp4 | 3.47MB Part 01-Module 04-Lesson 03_Risk Factor Models/07. M4 L2A 04 Factor Model Of Portfolio Return V3-HEoPljS1wD0.mp4 | 3.47MB Part 01-Module 04-Lesson 03_Risk Factor Models/05. M4 L2A 03 Factor Model Of Asset Return V2-7UnllxDmLj8.mp4 | 3.48MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. M4 L2A 21 Cross Sectional Risk Model V3-mpnRAt8qUus.mp4 | 3.48MB Part 01-Module 04-Lesson 03_Risk Factor Models/10. M4 L2A 06 Variance Of One Stock V3-rxaABg4wVZo.mp4 | 3.49MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. M4 L1B 01 Intro To Lesson V1-ff0paDNA75U.mp4 | 3.49MB Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4 | 3.50MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. M4 L2A 12 Time Series Risk Model Factor Variance V2-hjVBXeZmA0w.mp4 | 3.50MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4 | 3.51MB Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.mp4 | 3.51MB Part 01-Module 02-Lesson 04_Time Series Modeling/01. M2L4 01 Time Series Modeling V4-QeIu7GMZl20.mp4 | 3.52MB Part 01-Module 03-Lesson 02_ETFs/09. L2 11 Arbitrage V2-yp-CcGrMzYQ.mp4 | 3.53MB Part 01-Module 01-Lesson 05_Market Mechanics/01. M1L3 01 Intro V4-LE-4Xf8lzHk.mp4 | 3.53MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4 | 3.54MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4 | 3.54MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4 | 3.54MB Part 01-Module 03-Lesson 02_ETFs/10. L2 12 Misaligned ETF Pricing V3-5-pBZ3fyv6I.mp4 | 3.55MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/13. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.mp4 | 3.56MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 04 Indices Describe The Market V2-jNzwxE3el7I.mp4 | 3.57MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4 | 3.57MB Part 01-Module 03-Lesson 02_ETFs/04. L2 06 Hedging V3-4k1bdohhawI.mp4 | 3.57MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. M4 L1B 13 Momentum Or Reversal V3-izTAHVF6V_g.mp4 | 3.57MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.mp4 | 3.58MB Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4 | 3.59MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.mp4 | 3.60MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. M4 L2A 17 Fama French Size Factor V3-FXZuHsn0bx4.mp4 | 3.62MB Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4 | 3.62MB Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04b Dividends V2-OVZw9tci55w.mp4 | 3.62MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. M4 L1B 11 How An Alpha Factor Becomes A Risk Factor Part 1 V3-p0cTudt8kXI.mp4 | 3.64MB Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.mp4 | 3.64MB Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4 | 3.65MB Part 02-Module 01-Lesson 05_Financial Statements/19. M5 SC 10 Parsing An HTML File V1-Ybl4fI92cYE.mp4 | 3.65MB Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4 | 3.66MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 | 3.66MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 | 3.66MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4 | 3.67MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. M4 L3b 22 Summary V2-Tq8yVPEHxXs.mp4 | 3.67MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. L1 05 Market Cap V2-PE0UgUc0f0U.mp4 | 3.69MB Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4 | 3.70MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. L1 15 Calculating Index After Add Or Delete V2-hiAHRE6JY0k.mp4 | 3.70MB Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4 | 3.74MB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4 | 3.75MB Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.mp4 | 3.75MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4 | 3.76MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4 | 3.76MB Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 01 Stock Pt II V1-SGb54HLbk1g.mp4 | 3.76MB Part 01-Module 02-Lesson 04_Time Series Modeling/03. M2L4 03 Moving Average Models V5-1FkCP_dwxjI.mp4 | 3.76MB Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.mp4 | 3.77MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4 | 3.77MB Part 01-Module 04-Lesson 06_Alpha Factors/10. M4 L3a 07 Ranking Part 2 V2-uwPUV5LBhWY.mp4 | 3.77MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 00 Intro V2-JA4WBd6sHF4.mp4 | 3.78MB Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4 | 3.79MB Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.mp4 | 3.80MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4 | 3.81MB Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.mp4 | 3.81MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4 | 3.81MB Part 01-Module 01-Lesson 08_Momentum Trading/14. MV 13 Global Talent Is Equally Distributed V1-QwDJbbBl_48.mp4 | 3.84MB Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4 | 3.84MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 | 3.85MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 | 3.85MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4 | 3.85MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4 | 3.85MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4 | 3.85MB Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4 | 3.85MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 17 Active Vs Passive V2-QzoHmUzJ5zw.mp4 | 3.86MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4 | 3.87MB Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4 | 3.89MB Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4 | 3.90MB Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4 | 3.90MB Part 01-Module 04-Lesson 01_Factors/07. M4 L1A 06 Demean Part 2 V2-aaj1QVsSCIs.mp4 | 3.90MB Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4 | 3.92MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. M4 L2A 20 Fama French Risk Model V3-tepvGkpNKrI.mp4 | 3.93MB Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.mp4 | 3.94MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. M4 L2b 02 Vector Two Ways V3-mlw6FnCUloU.mp4 | 3.94MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 03 Indices Are Virtual Portfolios V2-oAd_szbBNWc.mp4 | 3.94MB Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4 | 3.94MB Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 | 3.95MB Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4 | 3.96MB Part 01-Module 04-Lesson 03_Risk Factor Models/12. M4 L2A 08 Variance Of 2 Stocks Part 1 V3-PlPusmuR20k.mp4 | 3.96MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. M2L6 02 Mean Reversion V5-zQ08lFcZa_A.mp4 | 3.97MB Part 01-Module 04-Lesson 03_Risk Factor Models/17. M4 L2A 11 Types Of Risk Models V1-SHj2VzJggAE.mp4 | 3.98MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4 | 3.98MB Part 02-Module 01-Lesson 05_Financial Statements/08. M5 SC 3 Finding Metacharacters V1-RiSVD9E823Q.mp4 | 4.00MB Part 01-Module 03-Lesson 02_ETFs/03. L2 02 Commodities V2-gc_GMqbCC2Q.mp4 | 4.01MB Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4 | 4.01MB Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.mp4 | 4.01MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 | 4.01MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 | 4.01MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.mp4 | 4.03MB Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4 | 4.03MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4 | 4.06MB Part 01-Module 01-Lesson 06_Data Processing/14. MV 06 Our Goal Is To Help You Meet Your Goals V1--pSppDzJRu8.mp4 | 4.08MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4 | 4.09MB Part 01-Module 01-Lesson 06_Data Processing/13. M1L4 16 Alternate Data V2-DFwu2ysGY8c.mp4 | 4.10MB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.mp4 | 4.11MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 | 4.14MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 | 4.14MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. L1 11 Adding Or Removing From An Index V2-_bWIZWa20j8.mp4 | 4.15MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. L1 10 Market Cap Weighting V2-7qVVA5yLFnY.mp4 | 4.15MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.mp4 | 4.15MB Part 01-Module 03-Lesson 02_ETFs/08. L2 10 Lower Operational Costs And Taxes V2-UlJusglK0h0.mp4 | 4.16MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4 | 4.16MB Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4 | 4.16MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. M4 L2b 15 PCA As A Factor Model Pt 1 V3-4E3C5E-MmkI.mp4 | 4.17MB Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4 | 4.18MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4 | 4.18MB Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4 | 4.19MB Part 01-Module 01-Lesson 08_Momentum Trading/01. M1L6 01 Designing A Trading Strategy V4-O7c6bPXBUsU.mp4 | 4.20MB Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4 | 4.21MB Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4 | 4.21MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. M4 L2A 24 Categorical Variable Estimation V4-50hvTluqz3U.mp4 | 4.22MB Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4 | 4.22MB Part 01-Module 04-Lesson 06_Alpha Factors/48. M4 L3a 21 Its All Relative V2-VBcOrT7TuFA.mp4 | 4.22MB Part 01-Module 02-Lesson 02_Outliers and Filtering/05. M2L2 04 Spotting Outliers In Raw Data V3-kFIB0YIW1TQ.mp4 | 4.22MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4 | 4.22MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4 | 4.22MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4 | 4.23MB Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4 | 4.24MB Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4 | 4.24MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. M4 L2A 16 Fama French Size Factor V2-94a2ugitC_E.mp4 | 4.24MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. M2L6 20 Summary V2-wuzha8SU2jw.mp4 | 4.25MB Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4 | 4.25MB Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4 | 4.26MB Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.mp4 | 4.30MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. L1 19 Smart Beta V2-Rc9NEmNMzk8.mp4 | 4.30MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. M4 L4 04 Regularization V4-fq-CanyDHuw.mp4 | 4.31MB Part 01-Module 04-Lesson 06_Alpha Factors/41. M4 L3a 181 Quantile Analysis Part 1 V2-oT5GFbg0G8g.mp4 | 4.33MB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. M4 03 Coming In Term II V1-2jF5J8MIdqc.mp4 | 4.33MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. L1 08 SP Index Categories V2-D3VGIvti71g.mp4 | 4.34MB Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.mp4 | 4.35MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4 | 4.36MB Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4 | 4.36MB Part 01-Module 01-Lesson 05_Market Mechanics/08. M1L3 10 Volume V3-DFp7kp0xRCo.mp4 | 4.37MB Part 01-Module 03-Lesson 02_ETFs/03. L2 03 Commodity Futures V3-qvSubjxMGJ0.mp4 | 4.37MB Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. MV 12 Transition To Project 03 V1-ClzlNlWqMQI.mp4 | 4.38MB Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4 | 4.40MB Part 01-Module 02-Lesson 04_Time Series Modeling/02. M2L4 02 Autoregressive Models V5-9jE7S4b-oIU.mp4 | 4.42MB Part 01-Module 01-Lesson 08_Momentum Trading/06. M1L6 06 Trading Strategy V2-rrCHC20FkIc.mp4 | 4.43MB Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4 | 4.45MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.mp4 | 4.47MB Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4 | 4.48MB Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4 | 4.50MB Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4 | 4.51MB Part 01-Module 01-Lesson 06_Data Processing/08. M1L4 11 Survivor Bias V2-39MeCCw5ndM.mp4 | 4.52MB Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. M4 L2A 27 Summary V1-rdqINNkTlqs.mp4 | 4.52MB Part 01-Module 04-Lesson 01_Factors/08. M4 L1A 07 Rescale Part 1 V2-BcsxA0vy3jA.mp4 | 4.52MB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4 | 4.52MB Part 01-Module 01-Lesson 08_Momentum Trading/13. M1L6 12 Finding Alpha V1-r8lfWVhfQC0.mp4 | 4.53MB Part 01-Module 04-Lesson 06_Alpha Factors/27. M4 L3a 13 Sharpe Ratio V4-W8nfg1fkloA.mp4 | 4.58MB Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.mp4 | 4.59MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4 | 4.59MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. M4 L3b 14 IVol Value And Idiosyncratic Volatility Overview V2-h7vamh2FPMs.mp4 | 4.60MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.mp4 | 4.60MB Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4 | 4.61MB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4 | 4.62MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 22 Relative Returns V2-m4MvYRlyPoU.mp4 | 4.62MB Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.mp4 | 4.62MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.mp4 | 4.62MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.mp4 | 4.63MB Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.mp4 | 4.63MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. M4 L1B 18 EventDriven Factors V1-2mnwjChH2hg.mp4 | 4.64MB Part 01-Module 03-Lesson 02_ETFs/05. L2 07 ETF Sponsor V2-v5vfAP1nJ10.mp4 | 4.66MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4 | 4.66MB Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4 | 4.66MB Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4 | 4.66MB Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.mp4 | 4.67MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.mp4 | 4.67MB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4 | 4.67MB Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 | 4.70MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. M4 L3b 07 Winners And Losers Accelerated And Decelerated Gains And Losses V2-cdSdKl4uxVM.mp4 | 4.71MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4 | 4.73MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4 | 4.73MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. L1 32 Summary V1-Pt2sVftdwS0.mp4 | 4.74MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.mp4 | 4.74MB Part 01-Module 02-Lesson 05_Volatility/06. M2L5 06 Rolling Windows V3-4EuMKqeNXA0.mp4 | 4.79MB Part 01-Module 03-Lesson 02_ETFs/03. L2 05 International ETFs V2-OL2p8S-82mY.mp4 | 4.80MB Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4 | 4.80MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4 | 4.80MB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4 | 4.81MB Part 01-Module 02-Lesson 03_Regression/10. M2L3 09 Transforming Data V3-N8Fhq8wiQZU.mp4 | 4.82MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4 | 4.82MB Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4 | 4.83MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4 | 4.84MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4 | 4.84MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. L1 24 Hedging Strategies V3-8bzw4ZMGpWU.mp4 | 4.86MB Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.mp4 | 4.88MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4 | 4.89MB Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4 | 4.90MB Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4 | 4.90MB Part 01-Module 04-Lesson 06_Alpha Factors/37. M4 L3a 162 Real World Constraints Transaction Costs V2-HAif7xSh8z0.mp4 | 4.91MB Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.mp4 | 4.93MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 18 Alpha And Beta V3-CcVdfrr5nD8.mp4 | 4.93MB Part 01-Module 03-Lesson 04_Portfolio Optimization/02. L4 02 What Is Optimization V2-ISRlP1GeOjU.mp4 | 4.97MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. M4 L4 14 Transaction Costs V3-yxwqTvbJhhc.mp4 | 4.97MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.mp4 | 4.97MB Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.mp4 | 4.97MB Part 01-Module 02-Lesson 01_Quant Workflow/01. MV 05 Intro To Module 2 V1-92JzOXda9Q8.mp4 | 4.97MB Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 2 V1-v3w4JZKQixc.mp4 | 5.00MB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4 | 5.00MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4 | 5.02MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. L1 16 Funds V2-s9f2Bzc9lnk.mp4 | 5.06MB Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4 | 5.08MB Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.mp4 | 5.09MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4 | 5.11MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 | 5.13MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 | 5.13MB Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.mp4 | 5.13MB Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4 | 5.14MB Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04 Corporate Actions V5-S60WArbQK7k.mp4 | 5.14MB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4 | 5.17MB Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.mp4 | 5.17MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. M4 L3b 03 Overnight Returns Possible Alpha Factors V2-QBCDr9q2rLo.mp4 | 5.18MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.mp4 | 5.18MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4 | 5.20MB Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4 | 5.21MB Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4 | 5.21MB Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 02 Returns V6-PngIo6G73Z8.mp4 | 5.24MB Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4 | 5.25MB Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4 | 5.26MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. L1 12 How An Index Is Constructed V2-dsbi4dvdU9c.mp4 | 5.26MB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4 | 5.28MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. M4 L2b 04 Bases As Languages V3-yEL0-AE3mjo.mp4 | 5.30MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4 | 5.31MB Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4 | 5.33MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 | 5.33MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 | 5.33MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 | 5.35MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 | 5.35MB Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.mp4 | 5.36MB Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.mp4 | 5.36MB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4 | 5.36MB Part 01-Module 02-Lesson 01_Quant Workflow/04. M2L1 03 Flavors Of Trading Strategies V4-uCCx8I9u_Nk.mp4 | 5.38MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4 | 5.39MB Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. M4 01 Intro To Project 4 V1-7goOG7CdUjU.mp4 | 5.39MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. L3 04 Portfolio Variance V2-LlxRypakop4.mp4 | 5.39MB Part 01-Module 04-Lesson 06_Alpha Factors/23. M4 L3a 11 Universe Construction Rule V3-Cr0-k7gUSNg.mp4 | 5.40MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 02 Indices V2-BRv5B78YBGs.mp4 | 5.41MB Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4 | 5.41MB Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.mp4 | 5.41MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. M4 L4 08 Factor Exposure And Position Constraints V3-wMY4zI5zLSM.mp4 | 5.42MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. M4 L2b 08 Writing It Down Pt 1 V3-NyDNFqm8c_s.mp4 | 5.43MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. L1 07 Ratios V2-Dfbwep-tkok.mp4 | 5.43MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. M4 L4 20 Outro V1-c3J8t6q2BGo.mp4 | 5.45MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4 | 5.46MB Part 01-Module 04-Lesson 06_Alpha Factors/45. M4 L3a 19 Quantiles Academic Research Vs Practitioners V2-AwL7cV2VyhM.mp4 | 5.47MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. M2L6 09 Cointegration V6-N4ZI5SyFMOc.mp4 | 5.47MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4 | 5.48MB Part 01-Module 03-Lesson 02_ETFs/01. L2 01 Intro V2-utlPzT8MEsM.mp4 | 5.48MB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4 | 5.49MB Part 01-Module 04-Lesson 06_Alpha Factors/38. M4 L3a 171 Turnover As Proxy For Real World Constraints V2-6xo8sZjoSVk.mp4 | 5.50MB Part 01-Module 04-Lesson 01_Factors/06. M4 L1A 05 Demean Part 1 V3-R3N8bd8U6TM.mp4 | 5.52MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. M4 L3b 02 Overnight Returns Abstract V2-q5xidwa5W8w.mp4 | 5.55MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. M4 L3b 01 Case Studies Intro V3-oWWrWbzDi2k.mp4 | 5.55MB Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4 | 5.55MB Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.mp4 | 5.56MB Part 01-Module 02-Lesson 03_Regression/18. MV 14 What Happens In Your Brain V1-ioDP7ndd40Y.mp4 | 5.58MB Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4 | 5.58MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. L1 27 OpenEnd Mutual Funds V2-T4_mmjEKUAo.mp4 | 5.60MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. M4 L3b 05 Overnight Returns Methods Quantile Analysis V3-4Js3mghq2mU.mp4 | 5.60MB Part 01-Module 02-Lesson 05_Volatility/10. M2L5 09 Forecasting Volatility V3-82v4v_PKDAE.mp4 | 5.60MB Part 01-Module 03-Lesson 02_ETFs/02. L2 12 Shortcomings Of Mutual Funds V2-oEqsaex31Qg.mp4 | 5.62MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. 9 DefiningModel V1-SpvIZl1YQRI.mp4 | 5.63MB Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4 | 5.64MB Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4 | 5.66MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. L3 02 Diversification V3-tyzqlXddXd8.mp4 | 5.67MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.mp4 | 5.67MB Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4 | 5.67MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/27. MV When Those Around You Dont Believe In You V1--vKspTOIXY0.mp4 | 5.69MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 | 5.69MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 | 5.69MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. M4 L3b 19 IVol Quantamental Investing V2-K6Ud6gams-U.mp4 | 5.70MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. M4 L1B 16 Fundamentals V1-rPii5-ry8nc.mp4 | 5.70MB Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4 | 5.70MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4 | 5.74MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 | 5.75MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 | 5.75MB Part 01-Module 04-Lesson 01_Factors/09. M4 L1A 08 Rescale Part 2 V3-8Ix10U6MEug.mp4 | 5.75MB Part 01-Module 01-Lesson 08_Momentum Trading/02. M1L6 02 Momentumbased Signals V4-RedwbmYg6e4.mp4 | 5.75MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. L1 13 Hang Seng Index Construction V2-rdGdC-meRLU.mp4 | 5.77MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. L1 31 Transaction Costs V2-JGYAv7tQpyY.mp4 | 5.79MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.mp4 | 5.82MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. M4 L3b 08 Winners And Losers Approximating Curves With Polynomials V4-Nw6v2EeECt0.mp4 | 5.83MB Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4 | 5.84MB Part 01-Module 02-Lesson 03_Regression/15. M2L3 14 Regression In Trading V2-bcOGRWxg7qQ.mp4 | 5.86MB Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4 | 5.90MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/07. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.mp4 | 5.90MB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4 | 5.92MB Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4 | 5.92MB Part 01-Module 04-Lesson 01_Factors/05. M4 L1A 04 Standardizing A Factor V5-sLZY2SQ4uME.mp4 | 5.93MB Part 01-Module 01-Lesson 07_Stock Returns/03. M1L5 03 Log Returns V5-62fZN1QnGjc.mp4 | 5.93MB Part 02-Module 01-Lesson 05_Financial Statements/01. AIT M5L4A 01 Intro V1-BS4n9rRYGtw.mp4 | 5.98MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.mp4 | 5.99MB Part 01-Module 04-Lesson 03_Risk Factor Models/15. M4 L2A 10 Portfolio Variance Using Factor Model V4-V06aCZUvgbo.mp4 | 6.01MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. MV 05 Time Management V1-22PdQNlhCt8.mp4 | 6.03MB Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4 | 6.06MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.mp4 | 6.06MB Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4 | 6.08MB Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4 | 6.09MB Part 01-Module 02-Lesson 03_Regression/02. M2L3 02 Distributions V2-ZlRGxq5I9BU.mp4 | 6.13MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 | 6.17MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 | 6.17MB Part 01-Module 04-Lesson 06_Alpha Factors/03. M4 L3a 02 Alpha Factors Versus Risk Factor Modeling V2-qsahBvhVTkk.mp4 | 6.18MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. M4 L4 06 Standard Constraints V4-OPBKsNQPr6I.mp4 | 6.22MB Part 01-Module 02-Lesson 03_Regression/04. M2L3 04 Parameters Of A Distribution V3--akdmiLDny4.mp4 | 6.25MB Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4 | 6.26MB Part 01-Module 01-Lesson 08_Momentum Trading/09. M1L6 09 Statistical Analysis V10-_p1m_q8jE6E.mp4 | 6.26MB Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4 | 6.27MB Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.mp4 | 6.29MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 01 Stocks V2-XHo5iyxDxOQ.mp4 | 6.30MB Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4 | 6.30MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.mp4 | 6.31MB Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4 | 6.32MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. M2L6 13 Trade Pairs Of Stocks V6-i1yVMrgjtB0.mp4 | 6.32MB Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.mp4 | 6.32MB Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4 | 6.33MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4 | 6.36MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. L1 30 ClosedEnd Mutual Funds V3-y2VhtrF6vdc.mp4 | 6.39MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. M4 L3b 11 Skewness And Momentum Defining Skew V2-6PgqIpmJBJ8.mp4 | 6.40MB Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 | 6.42MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4 | 6.45MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. M4 L1B 19 Index Changes V1-C7QNfPZBXXo.mp4 | 6.47MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 29 Open End Funds Holding Cash For Withdrawals V3-RU8-ZRBJ2Cw.mp4 | 6.50MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4 | 6.52MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4 | 6.52MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4 | 6.54MB Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4 | 6.54MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/06. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.mp4 | 6.57MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4 | 6.58MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4 | 6.61MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4 | 6.61MB Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.mp4 | 6.61MB Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4 | 6.61MB Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 02 Stock Prices V7-l_PilXVuh8I.mp4 | 6.68MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4 | 6.71MB Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4 | 6.71MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. M4 L4 02 Setting Up The Problem Alphas V5-6GeyU-thC4U.mp4 | 6.71MB Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4 | 6.72MB Part 01-Module 02-Lesson 05_Volatility/03. M2L5 03 Annualized Volatility V8-yakh1pjP7uY.mp4 | 6.74MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.mp4 | 6.75MB Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4 | 6.78MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/21. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.mp4 | 6.80MB Part 02-Module 01-Lesson 05_Financial Statements/06. M5 SC 1 Raw Strings V1-WhL1VbulThY.mp4 | 6.88MB Part 01-Module 01-Lesson 06_Data Processing/04. M1L4 06 Technical Indicators V6-jo740Kq3YN4.mp4 | 6.89MB Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.mp4 | 6.92MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. M4 L1B 05 Covariance Matrix Using Factor Model V3-_qfTLXoifsM.mp4 | 6.93MB Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.mp4 | 6.93MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. L3 01 Intro V1-PxLJniuGyC0.mp4 | 6.94MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. M4 L2b 01 PCA Statistical Risk Model V1-lDxqJ0JYUzs.mp4 | 6.97MB Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4 | 6.98MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. M4 L3b 17 IVol Idiosyncratic Volatility V2-B8hOR4G9CJk.mp4 | 7.04MB Part 01-Module 01-Lesson 05_Market Mechanics/03. M1L3 03 Trading Stocks V3-GHoRtfUrUMc.mp4 | 7.04MB Part 01-Module 01-Lesson 07_Stock Returns/05. M1L5 06 Distribution Of Stock Prices Part 2 V1-cGoXGiO1DYk.mp4 | 7.07MB Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4 | 7.08MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.mp4 | 7.12MB Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4 | 7.12MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. M1L1 01 Welcome V1-W2R32yXgwcg.mp4 | 7.13MB Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4 | 7.14MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4 | 7.21MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4 | 7.21MB Part 01-Module 04-Lesson 06_Alpha Factors/07. M4 L3a 052 Controlling For Risk Within An Alpha Factor Part 2 V2-Ks8HiHcflPs.mp4 | 7.21MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. L3 08 The Efficient Frontier V3-tEEyhU23bI4.mp4 | 7.22MB Part 01-Module 04-Lesson 06_Alpha Factors/19. M4 L3a 10 Factor Returns V5-enyeTpyCS-o.mp4 | 7.22MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4 | 7.25MB Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4 | 7.25MB Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.mp4 | 7.25MB Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.mp4 | 7.27MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4 | 7.29MB Part 01-Module 02-Lesson 02_Outliers and Filtering/08. M2L2 07 Handling Outliers In Signal Returns V4-ILdnNi4CgZM.mp4 | 7.30MB Part 01-Module 02-Lesson 05_Volatility/02. M2L5 02 Historical Volatility V3-BOPhsYLHkUU.mp4 | 7.30MB Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.mp4 | 7.31MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. M4 L2b 06 The Core Idea V3-0KwLkaKHAvg.mp4 | 7.32MB Part 01-Module 02-Lesson 01_Quant Workflow/02. M2L1 01 Starting From A Hypothesis V3-yjlt4yerB9I.mp4 | 7.32MB Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.mp4 | 7.33MB Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4 | 7.36MB Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4 | 7.38MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. M2L6 01 Intro V3-CQ6QGAxbUF8.mp4 | 7.39MB Part 01-Module 04-Lesson 01_Factors/03. M4 L1A 03 Example Of A Factor V4-MJrwJDjWlAg.mp4 | 7.41MB Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4 | 7.42MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. M4 L3b 20 IVol Volatility Enhanced Price Earnings Ratio V2-x-1nqTEPGcA.mp4 | 7.46MB Part 01-Module 04-Lesson 06_Alpha Factors/13. M4 L3a 08 Z Score V3-6_cKCoLa92o.mp4 | 7.47MB Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4 | 7.48MB Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4 | 7.49MB Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4 | 7.52MB Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.mp4 | 7.53MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. M4 L4 12 Infeasible Problems V4-ljg25Rj511Q.mp4 | 7.53MB Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4 | 7.54MB Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4 | 7.54MB Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4 | 7.57MB Part 01-Module 03-Lesson 02_ETFs/06. L2 08 Authorized Participant And The Create Process V4-u4thSf3Uxsc.mp4 | 7.57MB Part 01-Module 01-Lesson 05_Market Mechanics/02. M1L3 02 Farmers Market V3-i_itXOdetCc.mp4 | 7.58MB Part 01-Module 04-Lesson 06_Alpha Factors/36. M4 L3a 161 Real World Constraints Liquidity V3-eu0YZRMu_3w.mp4 | 7.61MB Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4 | 7.61MB Part 02-Module 01-Lesson 05_Financial Statements/22. M5 SC 13 Searching The Parse Tree Part 2 V1-WS_bkGCk7qk.mp4 | 7.65MB Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4 | 7.65MB Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4 | 7.67MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. M4 L1B 08 Risk Factors V Alpha Factors Part 2 V2-AApfsuSpnMY.mp4 | 7.70MB Part 01-Module 04-Lesson 06_Alpha Factors/06. M4 L3a 051 Controlling For Risk Within An Alpha Factor Part 1 V3-raeVfAbBXnA.mp4 | 7.70MB Part 01-Module 02-Lesson 05_Volatility/01. M2L5 01 What Is Volatility V3-brGVwpDSuG4.mp4 | 7.73MB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4 | 7.74MB Part 01-Module 02-Lesson 04_Time Series Modeling/08. M2L4 09 Recurrent Neural Networks V5-5cYAAHyRHDo.mp4 | 7.74MB Part 01-Module 04-Lesson 06_Alpha Factors/35. M4 L3a 152 The Fundamental Law Of Active Management Part 2 V7-CMc4ujA8Ahs.mp4 | 7.75MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.mp4 | 7.77MB Part 01-Module 02-Lesson 03_Regression/11. M2L3 10 Linear Regression V4-GRY4eakMBJ8.mp4 | 7.80MB Part 01-Module 04-Lesson 06_Alpha Factors/04. M4 L3a 03 Definition Of Key Words V4-zySdIQTPTGo.mp4 | 7.80MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. M2L6 07 Finding Pairs To Trade V4-6hQtoElcnGM.mp4 | 7.82MB Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.mp4 | 7.85MB Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.mp4 | 7.87MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. M4 L4 07 Leverage Constraint V5-zJ9gon4rFQc.mp4 | 7.87MB Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4 | 7.87MB Part 01-Module 02-Lesson 02_Outliers and Filtering/06. M2L2 05 Handling Outliers In Raw Data V3-3l6kQZqlVJA.mp4 | 7.92MB Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4 | 7.99MB Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.mp4 | 8.00MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.mp4 | 8.01MB Part 01-Module 04-Lesson 06_Alpha Factors/31. M4 L3A 142 Ranked Information Coefficient Part 2 V5-WKGmog0Nzgo.mp4 | 8.07MB Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.mp4 | 8.09MB Part 01-Module 02-Lesson 05_Volatility/08. M2L5 07 Exponentially Weighted Moving Average V4-VBPitTHzYRI.mp4 | 8.13MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. M4 L4 03 Setting Up The Problem Risk V4-2vcULOlXTzc.mp4 | 8.13MB Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.mp4 | 8.13MB Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4 | 8.19MB Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 3 V1-vSxnkduTWWY.mp4 | 8.21MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. M4 L4 19 What Is Optimization Doing To OUr Alphas V3-6Yqb91Xahvg.mp4 | 8.22MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. M4 L1B 17 Fundamental Ratios V2-Eo-faV9CsP8.mp4 | 8.24MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/15. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.mp4 | 8.24MB Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4 | 8.26MB Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.mp4 | 8.30MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.mp4 | 8.34MB Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4 | 8.37MB Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4 | 8.49MB Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.mp4 | 8.50MB Part 01-Module 02-Lesson 02_Outliers and Filtering/07. M2L2 06 Spotting Outliers In Signal Returns V4-BSLGZz0RzTg.mp4 | 8.50MB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. MV 10 Transition From Project 02 Int V1-DYjOsL3VYfY.mp4 | 8.51MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. M4 L3b 12 Skewness And Momentum Momentum Enhances Or Weakened By Skew V2-S73J_h8DHsE.mp4 | 8.57MB Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.mp4 | 8.58MB Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4 | 8.60MB Part 02-Module 01-Lesson 05_Financial Statements/11. M5 SC 6 Metacharacters Part 1 V1-Jay3euM62NQ.mp4 | 8.61MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. M4 L2b 14 Explained Variance V3-OdHeReNUqoQ.mp4 | 8.69MB Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.mp4 | 8.76MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/09. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.mp4 | 8.78MB Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4 | 8.85MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. M4 L1B 23 Sentiment Analysis On News And Social Media V1-Jph7h2Yl0yg.mp4 | 8.87MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. M4 L1B 04 Factor Model Assumptions V3-qEu3m_3eGWk.mp4 | 8.95MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4 | 9.01MB Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4 | 9.01MB Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4 | 9.02MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.mp4 | 9.05MB Part 01-Module 04-Lesson 06_Alpha Factors/49. M4 L3a 22 Conditional Factors V2-2J1aUwGq6tc.mp4 | 9.17MB Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4 | 9.20MB Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.mp4 | 9.24MB Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4 | 9.25MB Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4 | 9.25MB Part 01-Module 04-Lesson 06_Alpha Factors/51. M4 L3a 25 Interlude Pt 1 V2-SMQwc5kwSr0.mp4 | 9.26MB Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4 | 9.33MB Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/01. Intro Term II V2-jSK9Pr7wFQo.mp4 | 9.34MB Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.mp4 | 9.40MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. M4 L1B 12 How An Alpha Factor Becomes A Risk Factor Part 2 V1-9waaTtRaU-Y.mp4 | 9.44MB Part 01-Module 03-Lesson 02_ETFs/12. MV 11 Guided Meditation V1-njp1mnEEv9s.mp4 | 9.45MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.mp4 | 9.51MB Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. MV 11 Intro To Module 03 Difficulties In Learning V1-kqjFkUVZwEc.mp4 | 9.55MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.mp4 | 9.57MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. M1L1 05 Program Overview V1-Ci0j_UwLlQQ.mp4 | 9.73MB Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. M2L6 04 Pairs Trading V3-7lEm_tFXcBk.mp4 | 9.73MB Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.mp4 | 9.80MB Part 01-Module 04-Lesson 06_Alpha Factors/39. M4 L3a 172 Factor Rank Autocorrelation Turnover V2-QBvbMiVW100.mp4 | 9.81MB Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. MV 7 Transition To Project 02 1 V1-nkAcx2X_lfs.mp4 | 9.82MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. M1L1 Introducing The Instructors 1 V4-l5gG7r-BWYc.mp4 | 9.85MB Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4 | 9.87MB Part 01-Module 04-Lesson 06_Alpha Factors/09. M4 L3a 06 Ranking Part 1 V4-4j2hIB7WHY4.mp4 | 10.00MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/08. PyTorch V2 Part 2 V1-CSQOdOb2mlg.mp4 | 10.00MB Part 01-Module 04-Lesson 06_Alpha Factors/46. M4 L3a 20 Transfer Coefficient V3-4rZ0MWQzlIs.mp4 | 10.08MB Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4 | 10.09MB Part 01-Module 04-Lesson 06_Alpha Factors/01. M4 L3a 01 Intro Efficient Market Hypothesis And Arbitrage Opportunities V3--YpXAt7zuh8.mp4 | 10.10MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Services-cuKecPpZ7PM.mp4 | 10.12MB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4 | 10.15MB Part 01-Module 02-Lesson 03_Regression/01. M2L3 01 Intro V4-C7vWJH05tKA.mp4 | 10.16MB Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. MV 03 Transition To Project 01 V1-dcps5Bg4bZE.mp4 | 10.22MB Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4 | 10.23MB Part 02-Module 01-Lesson 01_Welcome To Term II/02. AITND TII 02 Overview Of Term 2 V1-dVz-lVGvadY.mp4 | 10.32MB Part 01-Module 03-Lesson 04_Portfolio Optimization/03. L4 03 Optimization With Constraints V3-91WzhG6dti8.mp4 | 10.43MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. M4 L1B 20 Pre And Post Event V1-Olz9QZQaBxs.mp4 | 10.49MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. M4 L1B 09 Risk Factors V Alpha Factors Part 3 V1-UmdOVhcRCVU.mp4 | 10.49MB Part 01-Module 02-Lesson 02_Outliers and Filtering/04. M2L2 03 Outliers Signals And Strategies V5-zyVgpsRy-mU.mp4 | 10.51MB Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.mp4 | 10.53MB Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4 | 10.55MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. M4 L3b 04 Overnight Returns Data Universe Methods V2-Y_lBDa1hRco.mp4 | 10.55MB Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4 | 10.68MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.mp4 | 10.68MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. M4 L4 10 Estimation Error V4-WdrMIRhScN0.mp4 | 10.69MB Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4 | 10.70MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. M4 L3b 10 Skewness And Momentum Attentional Bias V3-3ZkFRBUmSQ0.mp4 | 10.75MB Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4 | 10.75MB Part 01-Module 04-Lesson 03_Risk Factor Models/01. M4 L2A 01 Intro V1-DgsD3yL9Yy0.mp4 | 10.80MB Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4 | 10.80MB Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4 | 10.81MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.mp4 | 10.88MB Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4 | 10.89MB Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4 | 10.92MB Part 02-Module 01-Lesson 05_Financial Statements/20. M5 SC 11 Navigating The Parse Tree V1-NzOB9Vyy0l4.mp4 | 10.97MB Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4 | 11.04MB Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4 | 11.07MB Part 01-Module 02-Lesson 04_Time Series Modeling/06. M2L4 07 Kalman Filter V4-CLJhgfMI4Ho.mp4 | 11.09MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. M4 L3b 18 IVol Value Fundamental Or Discretionary Investing V2-sKAE5Z8e7IM.mp4 | 11.14MB Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. M4 L3b 09 Winners And Losers Creating A Joint Factor V3-xmW05ii8Vxs.mp4 | 11.15MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4 | 11.18MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.mp4 | 11.19MB Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4 | 11.22MB Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. L3 09 Capital Market Line V2-BRO-vo3y0-U.mp4 | 11.25MB Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4 | 11.26MB Part 01-Module 02-Lesson 03_Regression/06. Testing For Normalilty-Sa1MJegyYfc.mp4 | 11.27MB Part 01-Module 04-Lesson 06_Alpha Factors/30. M4 L3A 141 Ranked Information Coefficient Part 1 V4-_huNulOIuB0.mp4 | 11.32MB Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4 | 11.32MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.mp4 | 11.35MB Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4 | 11.41MB Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4 | 11.42MB Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4 | 11.48MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. M4 L1B 14 PriceVolume Factors V2-zaG0PDc3wsA.mp4 | 11.54MB Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4 | 11.54MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. M4 L4 17 Path Dependency 1 V3-ok9rKYRtZLE.mp4 | 11.60MB Part 01-Module 04-Lesson 06_Alpha Factors/24. M4 L3a 12 Return Denominator Leverage And Factor Returns V3-QxHrP5LoXAI.mp4 | 11.73MB Part 02-Module 01-Lesson 05_Financial Statements/07. M5 SC 2 Finding Words V1-wTOh9B6aHGk.mp4 | 11.78MB Part 02-Module 01-Lesson 05_Financial Statements/21. M5 SC 12 Searching The Parse Tree Part 1 V1-RyJuvYTF3Ms.mp4 | 11.88MB Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4 | 11.94MB Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.mp4 | 11.95MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. M4 L1B 21 Analyst Ratings V1-cHkJo8qBKes.mp4 | 12.18MB Part 01-Module 03-Lesson 02_ETFs/09. L2 11 2 Arbitrage Farmers Market V1-hHxp16mQNGA.mp4 | 12.22MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/04. PyTorch V2 Part 1 V1-6Z7WntXays8.mp4 | 12.32MB Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4 | 12.34MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.mp4 | 12.38MB Part 01-Module 02-Lesson 05_Volatility/11. M2L5 11 Markets Volatility V3-jEHJkZUX9s4.mp4 | 12.46MB Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4 | 12.52MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4 | 12.55MB Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.mp4 | 12.59MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. M4 L1B 15 Volume Factors V1-1dTAV3Irxv4.mp4 | 12.63MB Part 02-Module 01-Lesson 05_Financial Statements/16. AIT M5L4B 06 Introduction To Beautifulsoup V3-k8e-kB3qBng.mp4 | 12.67MB Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.mp4 | 12.68MB Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4 | 12.78MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/16. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.mp4 | 12.81MB Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4 | 12.85MB Part 01-Module 04-Lesson 06_Alpha Factors/34. M4 L3a 151 The Fundamental Law Of Active Management Part 1 V4-iCW_vqvrTlw.mp4 | 12.96MB Part 01-Module 04-Lesson 06_Alpha Factors/50. M4 L3a 23 Summary V3-FZYqdaqoiZk.mp4 | 12.98MB Part 02-Module 01-Lesson 05_Financial Statements/23. M5 SC 14 Searching The Parse Tree Part 3 V1-PR--1dLqcTM.mp4 | 13.06MB Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.mp4 | 13.14MB Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4 | 13.22MB Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4 | 13.27MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.mp4 | 13.28MB Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4 | 13.33MB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.mp4 | 13.49MB Part 01-Module 04-Lesson 06_Alpha Factors/05. M4 L3a 04 Researching Alphas From Academic Papers V4-te0UTxemLBE.mp4 | 13.52MB Part 01-Module 04-Lesson 01_Factors/01. M4 L3A 01 Intro To The Factors V2-OqhRUxHf6wo.mp4 | 13.54MB Part 02-Module 01-Lesson 05_Financial Statements/10. M5 SC 5 Word Boundaries V1-3dWIHULqKog.mp4 | 13.61MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.mp4 | 13.67MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.mp4 | 13.76MB Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.mp4 | 13.96MB Part 01-Module 01-Lesson 06_Data Processing/05. M1L4 08 Missing Values V5-XaMaVFUIc_I.mp4 | 14.17MB Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.mp4 | 14.17MB Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.mp4 | 14.18MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. M4 L1B 02 What Is A Factor Model V4-K5QKPwU38Do.mp4 | 14.18MB Part 01-Module 03-Lesson 04_Portfolio Optimization/10. L4 11 Rebalancing A Portfolio V2-S5SPhBpG3b0.mp4 | 14.19MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. Jonathan Larkin - What Is A Quant-G22oM0qv0Hs.mp4 | 14.19MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. M4 L1B 03 Factor Returns As Latent Variables V3-LpHvJq6XTOQ.mp4 | 14.25MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.mp4 | 14.35MB Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4 | 14.35MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.mp4 | 14.62MB Part 02-Module 01-Lesson 05_Financial Statements/09. M5 SC 4 Searching For Simple Patte V1-7RAHoJ34gXI.mp4 | 14.65MB Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.mp4 | 14.69MB Part 01-Module 04-Lesson 06_Alpha Factors/52. M4 L3a 26 Interlude Pt 2 V2-1a60RPqhO8k.mp4 | 14.72MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4 | 14.80MB Part 01-Module 04-Lesson 06_Alpha Factors/53. M4 L3a 27 Interlude Pt 3 V2-v6cLkoJhujU.mp4 | 14.80MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.mp4 | 14.93MB Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4 | 14.97MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. M4 L1B 24 NLP Used To Enhance Fundamental Analysis V1-9zMWuZ9j7rI.mp4 | 15.06MB Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4 | 15.06MB Part 02-Module 01-Lesson 05_Financial Statements/18. M5 SC 16 HTML Structure V1-R3QLtHxedXw.mp4 | 15.07MB Part 01-Module 02-Lesson 05_Volatility/12. M2L5 12 Using Volatility For Equity Trading V5-Vh9ajVRedvY.mp4 | 15.13MB Part 01-Module 02-Lesson 02_Outliers and Filtering/02. M2L2 02 Sources Of Outliers V8-gXKhKQ2_TaA.mp4 | 15.13MB Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem SC V1-uyl44T12yU8.mp4 | 15.15MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. M4 L1B 07 Risk Factors V Alpha Factors V2-9KUpH1MDC1k.mp4 | 15.23MB Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4 | 15.33MB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4 | 15.41MB Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4 | 15.48MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. M4 L1B 25 Other Alternative Data V1-hMw3AuPVSSs.mp4 | 15.49MB Part 01-Module 03-Lesson 04_Portfolio Optimization/11. L4 12 Rebalancing Strategies V2-8u5gBx-fYr8.mp4 | 15.62MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/05. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.mp4 | 15.66MB Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4 | 15.71MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4 | 15.77MB Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4 | 15.78MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/17. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.mp4 | 15.84MB Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4 | 15.93MB Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4 | 15.95MB Part 01-Module 02-Lesson 04_Time Series Modeling/04. M2L4 05 Advanced Time Series Models V5-cj1RCBTDog8.mp4 | 16.63MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/10. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.mp4 | 16.70MB Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4 | 16.81MB Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4 | 16.86MB Part 02-Module 01-Lesson 05_Financial Statements/05. AIT M5L4B 01 Introduction To Regex V4-WCXDD_n1ZuA.mp4 | 16.96MB Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4 | 16.99MB Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. M4 L1B 06 Factor Models In Quant Finance V2-VeM2SudgZqc.mp4 | 17.25MB Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4 | 17.26MB Part 02-Module 01-Lesson 01_Welcome To Term II/01. AITND TII 01 Recap Of Term 1 V1-uhIvBfhcyLM.mp4 | 17.30MB Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4 | 17.37MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/25. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.mp4 | 17.49MB Part 02-Module 01-Lesson 05_Financial Statements/14. M5 SC 9 Substitutions And Flags V1-9pxTGOlkLEY.mp4 | 17.51MB Part 02-Module 01-Lesson 05_Financial Statements/13. M5 SC 8 Metacharacters Part 3 V1-nDlxRlDUNHk.mp4 | 17.63MB Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Jonathan Larkin Careers-QhHNPxM_Ku4.mp4 | 17.97MB Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4 | 18.01MB Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4 | 18.28MB Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/16. MV 12 Embrace The Struggle V2-SGcgOm5kiKU.mp4 | 18.31MB Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.mp4 | 18.32MB Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4 | 18.44MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/11. PyTorch V2 Part 3 V1-9ILiZwbi9dA.mp4 | 18.80MB Part 01-Module 01-Lesson 06_Data Processing/11. M1L4 13 Exchange Traded Funds V4-Zx7v5GCfpvI.mp4 | 18.91MB Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4 | 18.95MB Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.mp4 | 19.59MB Part 01-Module 04-Lesson 01_Factors/02. M4 L1A 02 Intro V2-W7_llXQ2GhA.mp4 | 19.76MB Part 01-Module 04-Lesson 03_Risk Factor Models/18. MV When You Dont Believe In Yourself 1 V1-rjCr-Z7UhZE.mp4 | 19.84MB Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4 | 19.91MB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.mp4 | 20.09MB Part 02-Module 01-Lesson 05_Financial Statements/02. AIT M5L4A 02 Financial Statement V6-XYff0ROHzWo.mp4 | 20.45MB Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.mp4 | 20.77MB Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4 | 20.96MB Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4 | 21.06MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/12. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.mp4 | 21.27MB Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4 | 21.62MB Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4 | 21.68MB Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4 | 21.97MB Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4 | 22.05MB Part 02-Module 01-Lesson 05_Financial Statements/12. M5 SC 7 Metacharacters Part 2 V1-KK1xo8GDfvE.mp4 | 22.56MB Part 01-Module 03-Lesson 04_Portfolio Optimization/12. L4 13 Limitations V2-UbbZa7-3iuk.mp4 | 23.20MB Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.mp4 | 23.31MB Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline SC V1-DHTwIwVk_sc.mp4 | 23.46MB Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4 | 23.75MB Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.mp4 | 29.51MB Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.mp4 | 33.73MB Part 02-Module 01-Lesson 05_Financial Statements/03. M5 SC 15 10Ks Walkthrough V1-0ytyZ4LVG6s.mp4 | 36.87MB Part 02-Module 01-Lesson 01_Welcome To Term II/03. AITND Term II Interview W Justin V2 V2-JOkwa1brNX8.mp4 | 48.24MB

Recommend

Magnetic link has been copied to the cutting board